Development of a satellite mission: From concept to launch

Yi Chao
Remote Sensing Solutions, Inc.
Pasadena, California, USA
Development of a marine debris satellite mission: From concept to launch
Development of a marine debris satellite mission: From concept to launch

Replace “marine debris” with “ocean salinity”

Development of an ocean salinity satellite mission: From concept to launch
Aquarius Project Scientist 2003-2011
Aquarius Launch on 10 June 2011
Ocean Salinity Sensing: 1st Workshop

- First salinity sensing workshop, La Jolla, CA, USA, 7-8 February 1998

Participant List:

- Adamec, David <adamec@gsfc.nasa.gov>
- Burrage, Derek <d.burrage@aims.gov.au>
- Cayan, Dan <dcayan@ucsd.edu>
- Chao, Yi <yc@pacific.jpl.nasa.gov>
- Dickson, Bob <R.R.DICKSON@cefas.co.uk>
- Gloersen, Per <per@intrepid.gsfc.nasa.gov>
- Howden, Stephen <howden@nemo.gsfc.nasa.gov>
- Huang, Xin <rhuang@whoi.edu>
- Koblnsky, Chet <chet@neptune.gsfc.nasa.gov>
- Lagerloef, Gary <lagerloef@esr.org>
- LeVine, David <dmlevine@meneg.gsfc.nasa.gov>
- Lindstrom, Eric <elindstr@hq.nasa.gov>
- Liu, Tim <liu@pacific.jpl.nasa.gov>
- Lukas, Roger <rlukas@iniki.soest.hawaii.edu>
- Miller, Jerry <jmillner@nrlssc.navy.mil>
- Murtugudde, Ragu <ragu@seetha.gsfc.nasa.gov>
- Njoku, Eni <eni.g.njoku@jpl.nasa.gov>
- Reynolds, Dick <rreynolds@sun1.wwb.noaa.gov>
- Stammer, Detlef <detlef@lagoon.MIT.EDU>
- Swift, Cal <klemyk@ecs.umass.edu>
- Tokmakian, Robin <robint@ucar.EDU>
- Weller, Bob <rweller@cliff.whoi.edu>
- Wilson, Bill <William.J.Wilson@jpl.nasa.gov>
- Yueh, Simon <simon@stokes2.Jpl.Nasa.Gov>
Ocean Salinity Sensing: 1st Workshop

- First salinity sensing workshop, La Jolla, CA, USA, 7-8 February 1998
- Three key ingredients
 - Increased awareness of salinity’s important role in ocean and climate.
 - Salinity (although small) can be sensed by passive microwave.
 - NASA Physical Oceanography program desires a comprehensive evaluation of the scientific importance and technical feasibility of such mission.

Participant List:

Adamec, David <adamec@gsfc.nasa.gov>
Burrage, Derek <d.burrage@aims.gov.au>
Cayan, Dan <dcayan@ucsd.edu>
Chao, Yi <yc@pacific.jpl.nasa.gov>
Dickson, Bob <R.R.DICKSON@cefas.co.uk>
Gloersen, Per <per@intrepid.gsfc.nasa.gov>
Howden, Stephen <howden@nemo.gsfc.nasa.nasa.gov>
Huang, Xin <ruhuang@whoi.edu>
Koblinsky, Chet <chet@neptune.gsfc.nasa.gov>
Lagerloef, Gary <lagerloef@esr.org>
LeVine, David <dmlevine@meneg.gsfc.nasa.gov>
Lindstrom, Eric <elindstr@hq.nasa.gov>
Liu, Tim <liu@pacific.jpl.nasa.gov>
Lukas, Roger <rlukas@iniki.soest.hawaii.edu>
Miller, Jerry <jmiller@nrlssc.navy.mil>
Murtugudde, Ragu <ragu@seetha.gsfc.nasa.gov>
Njoku, Eni <eni.g.njoku@jpl.nasa.gov>
Reynolds, Dick <reynolds@sun1.wwb.noaa.gov>
Stammer, Detlef <detlef@lagoon.MIT.EDU>
Swift, Cal <klemyk@ecs.umass.edu>
Tokmakian, Robin <robitnt@ucar.EDU>
Weller, Bob <rweller@cliff.whoi.edu>
Wilson, Bill <William.J.Wilson@jpl.nasa.gov>
Yueh, Simon <simon@stokes2.Jpl.Nasa.Gov>
Ocean Salinity Sensing

1977 - Skylab

1.4 GHz microwave radiometer

Klein and Swift, (1977)
Ocean Salinity Sensing

(From Le Vine, 1996)
Ocean Salinity Sensing: Challenge

• Technology challenge
 – Large errors ~1 psu (salinity unit): too large to justify a satellite mission
 – Need new, breakthrough, innovative ideas (R&TD)

• Community building
 – Salinity Science Working Group (Chaired by Gary Lagerloef; funded by NASA HQ)

• Working group workshops
 – #1: 7-8 February 1998 in La Jolla, CA
 – #2: 19-21 April 1999 at GFSC, Greenbelt, MD
 – #3: 22-23 January 2000 in San Antonio, TX
Passive/Active L- and S-band (PALS) Microwave Instrument at JPL

Laboratory Test

Aircraft Test
Ocean Salinity Sensing: Ground Truthing
Ocean Salinity Sensing Timeline

- **Salinity sensing theory**
- **NRL salinity mapper**
- **Passive microwave radiometer at GSFC**
- **Passive microwave radiometer & active scatterometer at JPL**
- **Workshop #1**
- **Workshop #2**
- **Workshop #3**
- **ESSP-3 RFP released**
- **Aquarius selected as NASA ESSP mission**

Aquarius Satellite Mission

- **Risk mitigation**
- **Formulation**
- **Implementation**
- **Operation**
Aquarius as a NASA ESSP-3 mission

- Aquarius is a focused, science-driven mission
 - Well-defined requirements

<table>
<thead>
<tr>
<th>Level 1 Science Mission Requirement</th>
<th>Baseline Mission</th>
<th>Minimum Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Aquarius Mission shall collect the space-based measurements to retrieve Sea Surface Salinity (SSS) with global root-mean-square (rms) random errors and systematic biases no larger than 0.2 psu on 150 km by 150 km scales over the open ocean.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SSS Averaging Interval</td>
<td>1 Month</td>
<td>3 Months</td>
</tr>
<tr>
<td>Mission Duration</td>
<td>At least 3 Years</td>
<td>At least 1 Year</td>
</tr>
<tr>
<td>Deliver Level 1, Level 2 and Level 3 data validated products to a NASA Distributed Active Archive Center (DAAC).</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Traceability from Science to Instruments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery and Exploration</td>
<td>Global coverage</td>
<td>Measure seawater emissivity sensitive to salinity (L-band)</td>
<td>Polar orbit</td>
</tr>
<tr>
<td>SSS mapping of unmeasured regions and features unknown to science</td>
<td>Mean and Variability Seasonal cycle</td>
<td></td>
<td>Baseline mission life: 3 years to ensure statistical confidence of seasonal cycle and track inter-year changes.</td>
</tr>
<tr>
<td>Water cycling</td>
<td>Resolution:</td>
<td>~3 meter aperture</td>
<td>Minimum mission life: 1 year</td>
</tr>
<tr>
<td></td>
<td>Baseline: 100-km</td>
<td></td>
<td>Low Earth Orbit @ 600 km altitude</td>
</tr>
<tr>
<td></td>
<td>Minimum: 200 km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean Circulation and Climate</td>
<td>Time scale:</td>
<td>Relative stability 0.15 K for 8 days</td>
<td>≥300 km swath to obtain global coverage within 8 days (from both ascending and descending orbits)</td>
</tr>
<tr>
<td>Tropics: Air-sea interaction and climate feedback</td>
<td>Monthly (science product) 8 days (obtain multiple samples and reduce random monthly error by averaging)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Latitude: Subduction and mode water formation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Latitude: Deep water formation, and convection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy:</td>
<td>Measure ocean T₀ to <0.2 K RMS error per observation</td>
<td>6 a.m. sun-synchronous orbit to avoid sun glint error.</td>
</tr>
<tr>
<td></td>
<td>Baseline: 0.2 psu</td>
<td></td>
<td>Stable thermal environment.</td>
</tr>
<tr>
<td></td>
<td>Minimum: 0.2 psu, tropics 0.3 psu, high latitudes</td>
<td></td>
<td>Surface roughness to 0.15 K rms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geophysical errors per observation <0.5 psu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Random errors to 0.3 psu.</td>
</tr>
</tbody>
</table>
Aquarius 3.75 years salinity data

Ocean salinity story continues...
Aquarius 3.75 years salinity data

Ocean salinity story continues...

Time to tell the story of marine debris?
Thank!
Questions?

Contact Information:
ychao001@gmail.com
(626) 602-6186