Balloon-Borne Observations of Gravity-Wave Momentum Fluxes over Antarctica and Surrounding Areas

A. Hertzog (Laboratoire de météorologie dynamique)
R. A. Vincent (University of Adelaide)
G. Boccaro, F. Vial (LMD)
Ph. Cocquerez (CNES)

R. Plougonven (LMD)
J. Alexander (CoRA)

http://www.lmd.polytechnique.fr/VORCORE/McMurdoE.htm
Motivations

• The forcing imposed by atmospheric gravity waves on the mean flow is parameterized in GCMs
• GWD parameterizations are tuned to reproduce climatological features (mesospheric jet closure, winter temperature in polar stratosphere and mesosphere)
• Parameterized GW momentum fluxes significantly vary from one scheme to the other
• Global observations of gravity-wave momentum fluxes may provide constraints on the parameterizations

… but only recently available: space-borne obs, radiosoundings, assimilation, and long-duration balloons
Superpressure balloons

- Closed balloon w/ stiff envelop, helium filled
- Constant-density (isopycnic surface)
 \[\rho_b \frac{dw_b}{dt} = (\rho_a - \rho_b) g \]
- Adveected by the horizontal wind
 => quasi-Lagrangian
- 10 m diam. (50 hPa, 19 km), 8.5 m (70 hPa, 17.5 km) and now 12 m
- Flight duration up to 3-4 months
- Payload: 15 kg – 50 kg
Vorcore campaign
McMurdo, Antarctica, 2005
27 balloon flights
Launch: September 5 - October 28
Last obs: February 1st, 2006
Mean duration: 58.5 days
Longest flights: 109 days

Concordiasi campaign
McMurdo, Antarctica, 2010
Vorcore campaign
McMurdo, Antarctica, 2005

27 balloon flights
Launch: September 5 - October 28
Last obs: February 1st, 2006

Mean duration: 58.5 days
Longest flights: 109 days
Observations

3D positions from GPS => u, v
Pressure
Temperature

Every 15 minutes
Estimation of GW momentum flux

- Wavelet decomposition of u, v, P → (time, intrinsic frequency)
- Rotation of (u, v) to get u_\parallel
- Pressure disturbance
 \[p'_l = p' + \zeta'_\rho \frac{\partial p}{\partial z} \]

The Lagrangian term
- Dominates, is linked to w'
- is in quadrature with p'
 \[u'_\parallel w' = -\frac{\hat{\omega} g}{\bar{\rho} N^2} \Im(p'_l u'_\parallel) \]

(Hertzog and Vial, 2001; Boccara et al, 2008)
Estimation of GW momentum flux

- Simulated balloon observations (w/ instrumental noise) to check GW retrievals
Estimation of GW momentum flux

- Simulated balloon observations (w/ instrumental noise) to check GW retrievals

Retrieved wave azimuth vs. Input wave azimuth

Momentum fluxes underestimated by ~ 15%

Directionnal momentum fluxes
Absolute momentum fluxes

- $\rho_0 <u'_w''>$ in 10°-5° longitude-latitude boxes (period $> 1h$)

Mean value ~ 2.5 mPa
Mean over 50 mPa above Peninsula
Extreme events up to ~ 1 Pa

Hertzog et al., 2008

Gravity wave Chapman conference, Honolulu, 2011
Absolute momentum fluxes

- $\rho_0 <u'_\parallel w'>$ in 10°-5° longitude-latitude boxes (period > 1h)

Mean value ~ 2.5 mPa
Mean over 50 mPa above Peninsula
Extreme events up to ~ 1 Pa

Hertzog et al., 2008

Mean value btw 2-3 mPa over Atlantic and Idian ocean
Less than 1 mPa over Plateau

Gravity wave Chapman conference, Honolulu, 2011
Orographic/Non-orographic waves

- Geographical criterion (based on topography gradients) to flag boxes as mountainous or non-mountainous
- Compute zonal-mean absolute fluxes and the contribution of both types of areas

[Diagram showing geographical criterion and zonal-mean momentum flux]
Orographic/Non-orographic waves

- Geographical criterion (based on topography gradients) to flag boxes as mountainous or non-mountainous
- Compute zonal-mean absolute fluxes and the contribution of both types of areas
\(\rho_0<u'w'> \) negative almost everywhere (including Atlantic Ocean)
No net tendency on \(\rho_0<v'w'> \)
Gravity-wave intermittency

For a given time-mean momentum flux, intermittent/permanent GWs break at different levels

(Over-)simplistic Bernoulli random process: on/off phases, and when “on”, always the same flux (Buhler, 2003) →

\[p(\text{on}) = \left(1 + \frac{\sigma^2}{\mu^2}\right)^{-1} \]

Lower \(p(\text{on}) \) (ie sporadic source) over mountains (10%) Larger \(p(\text{on}) \) above ocean (50-70%)
Gravity-wave intermittency

Observed (balloon) probability density functions (pdf)

Broader tail over mountain \rightarrow larger intermittency

« Spectrum » of MF values even for waves over the oceans
Momentum fluxes: HIRDLs/balloons

Limited to 50-65S, October, and zonal momentum flux
Momentum fluxes: HIRDLS/balloons

Limited to 50-65S, October, and zonal momentum flux

Good agreement between balloons and HIRDLS but large variations of PDFs w/ time and altitude

Gravity wave Chapman conference, Honolulu, 2011
Momentum fluxes: WRF/balloons

November and total momentum flux

Balloons

WRF
Concordiasi

- 19 flights
- Sept. 2010- Jan. 2011
- Mean duration > 2 months

- Several improvements
 - Obs. every 30 s
 → whole range of GWs
 - Improved GPS accuracy
 → c, \(\langle p'w' \rangle \)
Concordiasi

Diagnose momentum fluxes from f to $N/2$

Gravity wave Chapman conference, Honolulu, 2011
Summary

- Long-duration superpressure balloons are one of the techniques to diagnose GW momentum fluxes over wide geographical areas
- Vorcore results have highlighted strong orographic GW momentum fluxes, but also that zonally-averaged non-orographic wave momentum fluxes are equally important
- Evidence of consistent GW intermittency in balloons/HIRDLS/WRF datasets
- Should get improved results w/ Concordiasi campaign
- Equatorial campaign in ~ 5 years