Suki Manabe is generally regarded as the world’s foremost scientist in the field of numerical modeling of climate and climate change. He made a number of pioneering breakthroughs that help provide the foundation for the modern science of climatology, including the introduction of the concepts of radiative-convective equilibrium and convective parameterization. In collaboration with Joseph Smagorinsky, Prof. Manabe developed the first true comprehensive atmospheric simulation model that included sophisticated treatments of dynamics, radiative transfer and the hydrological cycle. In collaboration with Kirk Bryan, Prof. Manabe constructed the first comprehensive coupled ocean-atmosphere climate model. Prof. Manabe’s pioneering application of these models to the issue of climate change was crucial in initiating the current public concern about global environmental change. He played an important role in the early development of the Intergovernmental Panel on Climate Change (IPCC), which is the leading body providing scientific guidance on climate issues to the global community. The bulk of Prof. Manabe’s career was spent at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) in Princeton, where he continues to serve on the Princeton University faculty. Prof. Manabe helped build GFDL into the world’s premier laboratory for numerical simulation of the atmosphere and ocean. Among many honors, he has received the highest awards for research achievement from the AMS and the AGU. He is a member of the National Academy of Sciences and is a foreign member of learned academies in Europe and Canada. Also very noteworthy are two awards Prof. Manabe has received that recognize the practical impact of his work for society: the 1992 Blue Planet Prize and the 1997 Volvo Foundation Environmental Prize.