The Findlater Jet forces cold, nutrient-rich water to well up along the coast of Somalia and Arabia, making it one of the most productive oceans in the world. The jet has been thought to be broad and smooth, but analyses of new satellite data reveal that it is disrupted by sea surface features created by the jet as follows. During the summer monsoon, the jet drives the northward Somali Current, creating several nearly stationary eddies (left panel), among them the Great Whirl (I). Together with the coastal upwelling, these eddies form patches of cold surface water in the warm Arabian Sea. These cold patches slow down the Findlater Jet (right panel): Wind speed is less than 10 m/s over the cold filaments south of Socotra Island and increases to nearly 15 m/s over the warm water east of the island. The eddies thus change the regional wind, and this air-sea interaction contributes to their evolution and probably affects the ecosystem. This surprising covariation between SST and wind is another example of the recent finding by Xie and his colleagues at IPRC and elsewhere that SSTs and winds correlate positively in regions of warm-cold ocean fronts.