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This paper documents the continued development and testing of a new Lagrangian oceanic general cir-
culation model. The slippery sacks ocean model (SSOM), which represents a body of water as a pile of
conforming parcels, is improved and is used to simulate circulations in homogeneous oceans and in an
idealized model of the North Atlantic Ocean.

A method for including horizontal mixing in the SSOM is presented. A given sack’s nearest neighbors
are identified in the positive and negative x- and y-directions, and the sack exchanges momentum
and/or tracers with these neighbors. This formulation of mixing is straightforward to implement, compu-
tationally efficient, and it produces results similar to a standard Eulerian finite-difference representation
of diffusion.

The model’s ability to reproduce the Stommel and Munk solutions to the classical western boundary
current problem is tested. When steps are taken to reduce the potential energy barrier to sacks crossing
one another, the model generates circulations that are consistent with linear theory. In moderately non-
linear regimes the model produces appropriate departures from linear solutions including a boundary
current that continues along the northern boundary for a time.

Taking advantage of the new mixing scheme and lessons learned from simulations of homogeneous
oceans, the authors construct an idealized model of the North Atlantic Ocean. They compare simulations
conducted with the SSOM to similar simulations conducted with the Massachusetts Institute of Technol-
ogy general circulation model (MITgcm). The SSOM and the MITgcm produce similar wind-forced gyres,
thermocline structure, and meridional overturning. The SSOM is also used to explore how circulations
change in the limit when tracer diffusion goes to zero.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is the third in a series that describes the develop-
ment of a new ocean model that represents a body of water as a
pile of conforming parcels, or ‘‘slippery sacks.” The numerical
method that is the basis for the model is outlined by Haertel and
Randall (2002; hereafter HR02). The first application of the model
to a ‘‘real world” problem, upwelling in a large lake, is described by
Haertel et al. (2004; hereafter H04). In this study we further devel-
op the slippery sacks ocean model (SSOM), and use it to simulate
large scale ocean circulations for the first time. After testing the
SSOM’s ability to reproduce flows in classical models of western
boundary currents, we simulate circulations in an idealized model
of the North Atlantic Ocean. In this section we provide motivation
ll rights reserved.
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for this study, and we review classical theory of western boundary
currents.

1.1. Motivation

There are a number of advantages to using a fully Lagrangian
ocean model. First, and most obvious, is that such a model can
maintain the adiabatic property of advection (Griffies et al.,
2000) and exactly conserve every moment of tracer distributions.
Another related advantage is that the advection of an arbitrary
number of tracers requires a fixed number of calculations. When
a parcel’s position is updated, all tracers are moved along with
the parcel. A third advantage is that trajectory information is pro-
vided for all water parcels in the ocean without any extra compu-
tations. For these reasons it is likely that a fully Lagrangian ocean
model would be quite useful for studies that require careful treat-
ment of tracer mixing (e.g., Ito and Deutsch, 2006), a great number
of tracers, or detailed analysis of parcel trajectories. Experiments
conducted with the SSOM have revealed several other more subtle
advantages that do not necessarily apply to all Lagrangian models:
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(1) including arbitrarily complicated bottom topography with
irregular coastlines and islands adds no complexity to simulations;
(2) horizontal boundaries of bodies of water occur where the free
surface meets the coastline, and these can move as they do in
nature; (3) it is easy to implement Eulerian vertical mixing
schemes in the Lagrangian framework.

The above advantages provide motivation for the continued
development of the SSOM. However, the road to a full-fledged
fully-Lagrangian oceanic general circulation model is a long one,
with a number of remaining obstacles. The general nature of the
challenge we face is best described with the following metaphor:
the slippery sacks model is the platypus of ocean models. Many
features of the model are so radically different from conventional
ocean models that developing each component of the SSOM re-
quires creative engineering. While we have come up with adequate
solutions for the treatment of the pressure force (HR02) and verti-
cal mixing (H04), remaining challenges include implementing hor-
izontal mixing in a simple and computationally efficient manner,
validating the model for a broad range of oceanic flows, and iden-
tifying and addressing new numerical issues that are unique to the
slippery sacks framework.

In this study we use the SSOM to simulate circulations in homo-
geneous oceans and in an idealized model of the North Atlantic
Ocean. Even though many of the simulations we present are quite
idealized (e.g., of essentially two-dimensional circulations in
homogeneous oceans), this work has yielded progress in each of
the remaining challenges listed above: (1) prior to this study the
SSOM had not been used to simulate western boundary currents;
(2) a form of horizontal diffusion is implemented for this study;
(3) a new numerical issue is identified and addressed with the sim-
ulations presented here; and (4) this is the first study that exam-
ines the SSOM’s ability to simulate meridional overturning.
Therefore this study represents a few more important steps down
the road toward the development of a full-fledged Lagrangian
ocean model, which promises to have some unique capabilities
that distinguish it from all other models.

1.2. Classical theory of western boundary currents

In this section we review classical analytic solutions to
the western boundary current problem, which we compare to
SSOM simulations later in this paper. However, it should be
emphasized that the SSOM does not solve the vorticity equation
discussed below, but rather the more general Lagrangian equa-
tions discussed in Section 2. Moreover, the homogeneous ocean
simulated with the SSOM has sloping basin walls, whereas the
box ocean described below has vertical walls. Despite these dif-
ferences, we would expect the SSOM to be able to produce cir-
culations similar to those specified by the analytic solutions
presented below.

Consider a box-shaped ocean of constant depth D and width
and length L on a b-plane. For simplicity we assume that the ocean
has constant density q and that the surface stress acts as a body
force on a column of water. We also assume that there are two
types of friction: linear damping of velocity (i.e., bottom friction)
and horizontal viscosity. Then the following equation approxi-
mates the evolution of the vertical component of vorticity (e.g.,
Pedlosky, 1996, Eq. (2.2.9)):

@

@t
r2wþ Jðw;r2wÞ þ @w

@x
¼ ðr � sÞz � kr2wþ mr4w ð1Þ

where w ¼ wðx; y; tÞ is the stream function (u ¼ �@w=@y and
v ¼ @w=@x were u, v are velocity components), J denotes the Jaco-
bian operator, s is the surface wind stress, k is the linear damping
coefficient, and m is the horizontal viscosity coefficient. The vari-
ables in (1) have been non-dimensionalized by selecting L, ðbLÞ�1,
bL3, bL, bL3, and b2L3qD as units for horizontal distance, time, the
stream function, linear damping, viscosity, and the surface stress,
respectively. Note that (1) neglects the divergence of vorticity,
which is equivalent to assuming there is a rigid lid on top of the
ocean. The western and southern boundaries of the ocean are
placed along x ¼ 0 and y ¼ 0, respectively, which means that the
eastern and northern boundaries are at x ¼ 1 and y ¼ 1, respec-
tively. We consider an idealized forcing consistent with easterly
winds over the southern half of the basin and westerly winds over
the northern half:

s ¼ ð�s0 cosðpyÞ; 0Þ ð2Þ

Variations of this seemingly simple dynamical system have been
the subject of numerous studies (e.g., Pedlosky, 1996, Chapter 2).
In most cases solutions include intense western boundary currents
that are reminiscent of ocean currents such as the Gulf Stream and
the Kuroshio. While (1) and (2) obviously lack many features of real
oceans (e.g., variable bathymetry, density variations), they appear
to capture the most fundamental dynamics responsible for western
boundary currents. Moreover, the simplicity of this system and the
degree to which it has been studied make it an excellent test case
for a new ocean model.

Analytic solutions to (1) and (2) can be obtained by neglecting
non-linear terms, setting w ¼ 0 on the boundary (i.e., assuming
that the boundary is a streamline), and solving for a steady state.
Below we review two linear solutions for special cases that we
simulate with the slippery sacks model later in this paper.

(1) Stommel solution
Stommel (1948) provided the first solution to the western
boundary current problem. His solution to (1) and (2), which
neglects viscosity, is as follows (adapted from Krauss (1973,
p. 265)):

w ¼ s0

kp
sinðpyÞ 1� eð1�xÞ=2k sinhðaxÞ þ e�x=2k sinhðað1� xÞÞ

sinhðaÞ

� �
ð3Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð4k2Þ þ p2

q
. Fig. 1a shows the stream function

for k ¼ 0:05. There is a broad region of relatively weak south-
ward flow in the eastern portion of the basin. Here the advec-
tion of basic state vorticity (the last term on the left hand side
of (1)) is approximately balanced by the generation of vortic-
ity by the wind stress (the first term on the right hand side of
(1)) as found by Sverdrup (1947). Along the western boundary
there is a relatively intense northward current, with a non-
dimensional width approximately equal to k. Stommel
(1948) noted the general similarity of this flow pattern with
what occurs in oceans, and that it differs from the solution
given a constant Coriolis force, which is a symmetric gyre.

(2) Munk solution
Munk (1950) formulated the western boundary current
problem in a different way. He replaced linear friction with
harmonic viscosity (i.e., which corresponds to setting k ¼ 0
in (1) and (2) and using m > 0), and changed the boundary
condition from free-slip to no-slip. The Munk problem can
also be formulated with a free-slip boundary condition,
which is what we use here, and in that case the first-order
asymptotic solution to (1) and (2) is as follows (Pedlosky,
1987, Chapter 5):

w ¼ s0pð1� xÞ sinðpyÞ 1� e�x=ð2dmÞ cos

ffiffiffi
3
p

x
2dm

þ 1ffiffiffi
3
p sin

ffiffiffi
3
p

x
2dm

 !" #
ð4Þ

where dm ¼ m1=3 is the Munk boundary layer scale. Fig. 1b
shows the solution for dm ¼ 0:05. As seen in the Stommel solu-
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Fig. 1. Analytic solutions to the western boundary current problem for s0 ¼ 10�5.
(a) Stream function for the Stommel solution (k ¼ 0:05, m ¼ 0, contours:
w ¼ 2:5;7:5;12:5;17:5� 10�6). (b) Stream function for the Munk solution (k ¼ 0,
dm ¼ 0:05, contours: w ¼ 4:5;13:5;22:5;31:5� 10�6).
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tion there is southward flow in most of the basin, and an in-
tense northward current along the western boundary. How-
ever, unlike the Stommel solution, there is a strong offshore
counter current as well.

1.3. Outline of this paper

In this study we test the slippery sacks model’s ability to spin up
circulations similar those shown in Fig. 1 in homogeneous oceans,
and then we model similar gyres as well as deep overturning in an
idealized model of the North Atlantic Ocean. Section 2 describes
how we configure the model for simulations of homogeneous
oceans. Section 3 describes a new horizontal mixing scheme. Sec-
tion 4 discusses the existence of a potential energy barrier to circu-
lations in piles of slippery sacks, and how this barrier and can be
overcome. In Section 5 simulations of the Stommel and Munk solu-
tions for homogeneous oceans are compared with analytic solu-
tions. Simulations of circulations in an idealized model of the
North Atlantic Ocean are presented in Section 6. Section 7 is a sum-
mary and discussion.
x y x y
2. Model configuration for homogeneous oceans

Many of the simulations presented in this paper are of homoge-
neous oceans driven by idealized wind forcings. The assumption of
constant density simplifies the equations of motion for slippery
sacks. In this section we present these equations in simplified form,
and we describe several other aspects of our model configuration
specific to homogeneous ocean simulations.
2.1. Equations of motion

For a detailed description of equations of motion for slippery
sacks the reader is referred to HR02 and H04. Here we outline a
simplified version appropriate for homogeneous oceans. Horizon-
tal positions xi and velocities vi of sacks are predicted using classi-
cal mechanics:

dxi

dt
¼ vi ð5Þ

dvi

dt
þ f k� vi ¼

Fpi

Mi
þ afi

þ s
qD

ð6Þ

where i is the sack index, t is time, f is the Coriolis parameter, k is the
unit vector in the vertical, Fpi

the horizontal force on sack i resulting
from pressure, af i

is the acceleration due to friction, Mi is the mass of
sack i, q is density, and s is the surface wind stress. The last term in
(6) essentially applies the surface wind stress as a body force on a
column of water; each sack feels a portion of the surface wind stress
proportional to the cross-sectional area it would have if it were a col-
umn of water extending from the surface to the bottom.

Each slippery sack is assumed to have a horizontal mass distribu-
tion mi that is constant with respect to time in the sack’s frame of
reference. We use the mass distribution function provided by H04:

miðx; yÞ ¼
Mi

rxry
s
jxj
rx

� �
s
jyj
ry

� �
ð7Þ

where rx and ry are the sack radii in the x- and y-directions, respec-
tively, and the sack shape function sðdÞ ¼ 1þ ð2d� 3Þd2 for d < 1
and sðdÞ ¼ 0 for d P 1. This distribution is roughly shaped like a
bell, but it is not axisymmetric. A sack’s vertical thickness Hi can
be formulated in terms of the mass distribution as follows:

HiðxÞ ¼
miðx� xiÞ

q
ð8Þ

and the horizontal force on a sack resulting from hydrostatic pres-
sure is

Fpi
¼
Z

qgrHi bþ
Xn

j¼1

Hj

 !
dA ð9Þ

where the integral is evaluated over the horizontal projection of
sack i, g is gravity, n is the total number of sacks, b is the height
of the bottom topography, and A is the horizontal area measure.
The frictional acceleration results from linear damping of velocity
and horizontal viscosity:

afi
¼ �kvi þ ami

ð10Þ
where the calculation of ami

is discussed below.

2.2. Non-dimensional coordinates

In order to make the western boundary current simulations as
general as possible, and, in particular, to make it easy to compare
them with the analytic solutions discussed in Section 1, we use
the non-dimensional coordinate system defined for (1), which
means selecting L, ðbLÞ�1, and b2L3qD as units for horizontal dis-
tance, time, the surface stress, respectively. We also select D,
DL2q and L4b2=D as units of vertical distance, mass and gravity,
respectively, and set f ¼ by. Then (5)–(9) become:

d~xi

d~t
¼ ~vi ð11Þ

d~vi

d~t
þ ~yk� ~vi ¼

~Fpi

~Mi

þ ~afi
þ ~s ð12Þ

~mið~x; ~yÞ ¼
~Mi

~r ~r
s
j~xj
~r

� �
s
j~yj
~r

� �
ð13Þ



Fig. 2. An illustration of the initialization technique. In all panels the heavy line
denotes the bottom surface and light solid lines are sack outlines. (a) a rectangular
body of water bordered by rectangular walls, both of which are sliced along the
dotted lines. (b)–(d) Sack outlines and bathymetry for initial states with overlap
parameters of 1, 2, 3, respectively. For each case the sack radius is 1/10 of the initial
basin width.

146 P.T. Haertel et al. / Ocean Modelling 27 (2009) 143–159
~Hið~xÞ ¼ ~mið~x� ~xiÞ ð14Þ
~Fpi
¼
Z

~gr~Hi
~bþ

Xn

j¼1

~Hj

 !
~dA ð15Þ

where the tilde (�) notation denotes non-dimensional variables.
The non-dimensional slippery sacks simulations presented

below are not intended to apply to an entire ocean; rather, the
parameters we choose are based on the assumption that the
collection of sacks is representing the upper layer of an ocean.2 For
most of the simulations we assume D ¼ 200 m, L ¼ 5000 km,
q ¼ 1000 kg m�3, b ¼ 2:28� 10�11m�1 s�1, s0 ¼ 10�5, and ~g ¼
0:0005� 0:001. These values equate to an actual wind stress ampli-
tude of 0.13 N m�2, and values of gravity 6–12 times less than that
on earth. Using a low value of gravity in a homogeneous ocean is
analogous to employing gravity retardation in a more realistic set-
ting (GWR; Jensen, 1996, 2001, 2003; H04). This technique has been
used in ocean and lake simulations to increase computational effi-
ciency by allowing longer time steps, but it does have side effects,
such as greatly amplifying free surface height perturbations.3 In Sec-
tion 6 we discuss the consequences of using GWR in our idealized
model of the North Atlantic Ocean.

Eqs. (11)–(15) are solved using split time-differencing (H04);
the forward scheme is used for the viscous acceleration, and
2 If D were defined to be the actual depth of an ocean, velocities would be too weak,
and non-linear effects would be underestimated (Bryan, 1963).

3 Perturbations to surface elevations become large because GWR essentially
reduces the density difference between the water and the air above it.
third-order Adams-Bashforth time-differencing is used for the
other terms. The integral in (15) is approximated with a Riemann
sum which leads to the conservation of energy in the limit as the
time step approaches zero and requires OðnÞ operations to evaluate
for n sacks (HR02; H04).

2.3. Initialization

Representing a box-shaped body of water is a challenge for the
slippery sacks model; it is better suited to bodies of water with
more realistic sloping bathymetry. We use the initialization meth-
od developed by HR02 for the spreading ridge problem (see their
Fig. 3). To illustrate the technique we apply it to a rectangular
two-dimensional body of water bounded by walls on each side
(Fig. 2a). We divide the water and the walls into columns of equal
width, and then convert each column into a slippery sack with the
mass distribution referenced above. The initial bathymetry is con-
structed by stacking the wall sacks, and when the water sacks are
placed into the basin the free surface is perfectly level (Fig. 2b). The
resulting basin and pile of slippery sacks amount to horizontally
smoothed versions of the rectangular ocean and rectangular topog-
raphy (Fig. 2a and b). For the initialization depicted in Fig. 2b the
sack radius is selected to be equal to a column width, so that each
sack overlaps only one neighbor on each side. Alternatively, the
sack radius can be selected to be two or three times as wide as a
column (but it must be an integral multiple of the column width
in order to obtain a perfectly level free surface) yielding a pile of
sacks with a greater degree of overlap (Fig. 2c and d). Hereafter,
we refer to the sack overlap parameter as the ratio of the sack ra-
dius to the column width (i.e., Fig. 2b–d correspond to overlap
parameters of 1, 2, 3, respectively). It turns out that properly
adjusting this parameter is important for facilitating circulations
in piles of sacks. We have described the initialization technique
for a two-dimensional body of water for simplicity – it works the
same way for three dimensions (3D) except that the water and
walls are sliced in both the x- and y-directions and the resulting
box-shaped columns are converted into 3D sacks.

3. Horizontal mixing

One of the important new features of the SSOM developed for
this study is a scheme for horizontal mixing, which is patterned
after the implementation of vertical mixing discussed by H04.
Sacks are first partitioned into layers, and then individual layers
are divided into rows parallel to each horizontal axis, and sacks
are allowed to exchange momentum and/or tracers with their
nearest neighbors in a given row.4 We first describe how the mix-
ing scheme works for a single layer of sacks, and then discuss how
it is applied in three-dimensional simulations.

3.1. Mixing in a single layer

Horizontal fluxes in a given layer of sacks are calculated sepa-
rately for the x- and y-directions. To illustrate the method we dis-
cuss the x-flux in detail. At the beginning of a time step the
horizontal domain of the model is divided into rectangular sections
that run parallel to the x-axis and span the entire x-domain. Sacks
whose centroids lie in a given section are allowed to mix properties
with their nearest neighbor on each side, where ‘‘nearest” means
4 We actually only use this scheme to mix momentum (and not tracers) for the
simulations presented in later sections. However, we illustrate the scheme by
applying it to a hypothetical tracer for simplicity. Preliminary experiments suggest
that the scheme works in realistic applications for tracers as well; however, we have
not thoroughly tested for potential side effects such as the clustering of sack densities
around a discrete set of values.
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the sack having the smallest deviation in x-position. For example,
consider an intensive fluid property q and let Q denote the flux
of q in the x-direction. The following formula is used to calculate
the flux between adjacent sacks i and iþ 1:

Q iþ1=2 ¼ m
qiþ1 � qi

jxiþ1 � xij
qdA ð16Þ

where m is the coefficient of mixing, dA is the cross-sectional area of
the portion of the layer of sacks lying over the rectangular section,
and the vertical bars denote the distance metric. Note that if the
sacks have the same y-position, this flux is identical to the standard
second-order finite-difference diffusive flux. When the sacks have
different y-positions the flux is reduced in order to prevent excess
mixing resulting from an overestimate of j@q=@xj (i.e., the difference
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Fig. 3. A test of the horizontal mixing scheme. In each panel a box is plotted for
each grid point or sack, and its size indicates the tracer value. Tracer values at t ¼ 10
for (a) the finite difference simulation, (b) the slippery sacks simulation with
diffusion rows and columns parallel to x- and y-axis, and (c) the slippery sacks
simulation with diffusion rows and columns rotated 45�. Contours are plotted for
tracer values of 0.05, 0.1, and 0.15.
in q for the two sacks is also proportional to @q=@y in this case). The
flux in the y-direction is calculated in a similar way, except, of
course, sacks are partitioned into sections parallel to the y-axis.
The tendency of q for a given sack is as follows:

dq
dt
¼ 1

Mi
Q i�1=2 � Q iþ1=2 þ Q j�1=2 � Q jþ1=2

� �
ð17Þ

where i (j) indicates the sack’s position in its x-section (y-section).
In order to implement horizontal viscosity, (16) and (17) are applied
to each component of velocity independently. Momentum fluxes at
the horizontal boundaries are set to zero for the free-slip boundary
condition, and a virtual motionless sack is included at the boundary
for a no-slip boundary condition.

While this formulation of horizontal diffusion is only an approx-
imation of its counterpart in a finite-difference model, tests sug-
gest that it mixes momentum and/or tracers in a similar way. For
example, Fig. 3 shows a case in which a tracer having an initial
Gaussian distribution with an amplitude of 1 and a radius of 0.1
is mixed for 10 time units in a finite-difference model (Fig. 3a)
and in the slippery sacks model (Fig. 3b) given m ¼ 0:001 (all vari-
ables are non-dimensional). For the latter case the domain is di-
vided into 20 sections in both the x- and y-mixing calculations.
In both cases the maximum tracer concentration is reduced by a
factor of about 5 (Fig. 3a and b). Moreover, the tracer spreads to
cover a similar area in the two simulations. This experiment was
also conducted with 10 and 40 mixing sections, and in each case
the resulting field at t ¼ 10 differed from that for the 20-section
case by about 18%, suggesting that the scheme is sensitive to the
number of divisions used, but not drastically so. We also tried
rotating the diffusion rows and columns 45� (Fig. 3c), and while
individual tracer values changed slightly, the overall distribution
remained close to that for the finite difference simulation (Fig. 3a).

For the simulations of homogeneous oceans presented later in
the paper the number of mixing sections is set to the number of
sacks in a row or column in the initial sack array. This equates to
using mixing columns and rows that are 1/3 to 1/5 of a sack radius
wide. A minimum distance of 0.005–0.01 between adjacent sacks is
assumed for the flux calculation in order to ensure numerical sta-
bility. For the three-dimensional simulation presented in Section 6
we use mixing columns and rows that are a sack radius wide.

3.2. Horizontal mixing in three-dimensional simulations

Above we describe how the horizontal mixing scheme is applied
to a single layer of sacks. The scheme is applied in three-dimen-
sional oceans by first partitioning sacks into layers, and then apply-
ing the scheme to one layer at a time. For the three-dimensional
simulations presented below we tried partitioning sacks according
to their height (producing mixing along z-surfaces) and according
to their density (producing isopycnal mixing). The two methods
produced similar results, and we elected to present simulations
with isopycnal mixing, which more realistically represents hori-
zontal mixing by eddies. Note that even in three-dimensional
oceans the mixing scheme requires OðnÞ operations to complete5

where n is the number of sacks. One pass through the sacks is made
to assign them to layers, x-rows, and y-rows, and then another pass
through each row to do the mixing between adjacent sacks.
5 Even though the sorting of sacks by position is required for the mixing scheme,
which is an n logðnÞ operation, in practice, when resolution is increased the sizes of
sub-domains for parallel processing are decreased as are row/column sizes so that the
number of sacks that needs to be sorted remains about constant for each row/column.
Moreover, this sorting accounts for a small percentage of the computations in a time
step.
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4. Potential energy barriers to circulating slippery sacks

While carrying out simulations of western boundary currents in
homogeneous oceans we encountered an interesting phenomenon:
in order for non-divergent circulations to develop in an initially
motionless pile of slippery sacks, the system must escape a poten-
tial energy well. If the forcing applied to the system is too weak,
the sacks oscillate weakly about their initial positions rather than
circulating. Fortunately, there are ways to reduce the potential en-
ergy barrier to circulations to mitigate its adverse impacts on sim-
ulations. In this section we illustrate the potential energy barrier
concept, first for a simple system with a single slippery sack, and
then for a slippery sacks representation of a homogeneous ocean.

4.1. The lone sack in a valley

Suppose a slippery sack is initially motionless, sitting in a valley
in a region with sinusoidal topography (Fig. 4a). Let A denote the
amplitude of the topographic variations and L denote their length
scale. Suppose also that a steady force s is applied to the sack in
the positive x-direction (e.g., from a wind stress), and that once
the sacks starts moving this force is opposed by a frictional force
�kuM where k is the velocity damping coefficient, u is the sack’s
horizontal velocity, and M is the sack’s mass. Assuming that the
sack’s radius is small compared to L, the equation of motion for
the sack is as follows:

du
dt
¼ s

M
� g

@b
@x
� ku ð18Þ

where b is the height of the bottom topography and g is gravity. We
now consider how solutions to this equation vary as A is increased
from zero. We assume the sack is initially motionless and that
s=m ¼ 1 ms�2, k ¼ 0:1 s�1, and L ¼ 2pm. The solutions are approxi-
mated using forward time-differencing with a time step of 0.01 s.
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Fig. 4. The lone slippery sack in a valley. (a) Schematic. (b) Velocity as a function of
time for different values of the topography amplitude A.
We first consider the case A ¼ 0 (flat topography). Initially, the
forcing dominates the frictional dissipation and the sack acceler-
ates at a rate of almost s=M (1 ms�2). Later the frictional accelera-
tion approaches �s=M, and the sack’s velocity approaches a
constant value of s=ðMkÞ ¼ 10 ms�1 (Fig. 4b). Now suppose
A ¼ 0:05 m. In this case the sack is in a small potential energy well.
However, the forcing provides more than enough energy to escape,
and the sack’s velocity is quite similar to that in the A ¼ 0 case dif-
fering only by small perturbations at later times (Fig. 4b) that re-
sult from ascending and descending hills. The solution is
drastically different when A is increased to 0:15 m, however. The
potential energy well is sufficiently deep that the sack does not es-
cape, and it moves back and forth within the valley with velocity
perturbations about an order of magnitude smaller than those in
the A ¼ 0 case (Fig. 4b). Further increasing A to 0:2 m results in
similar oscillatory behavior, but with a higher frequency (Fig. 4b).

4.2. Multiple sacks in a basin

An analogy may be drawn between the above problem and the
problem of how a steady wind stress stirs up a circulation in a slip-
pery sacks representation of our homogeneous ocean. It turns out
that solutions to the latter problem have a similar character to
those to the former problem. Namely, there is a potential energy
barrier that must be overcome before a quasi-steady circulation
develops in the pile of sacks, or else the sacks oscillate weakly
about their initial positions. We illustrate this point by comparing
slippery sacks simulations to an analytic solution of a simplified
version of (1) and (2).

(1) Linear solution.
Since the potential energy barrier is unrelated to the Coriolis
force, we neglect it to simplify solutions (i.e., we neglect the
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Fig. 5. The analytic solution for the homogenous ocean in a non-rotating frame of
reference. (a) Stream function (contours: w ¼ 2:5� 10�6;7:5� 10�6;12:5� 10�6;

17:5� 10�6). (b) Velocity vectors.
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third term on the right hand side of (1)). If we also neglect
viscosity, then the steady solution to (1) and (2) is as
follows:

w ¼ s0

kp
sinðpyÞ 1� coshðpxÞ þ coshðpÞ � 1

sinhðpÞ sinhðpxÞ
� �

ð19Þ

The forcing generates a broad anticyclonic gyre that is sym-
metric in the east-west and north-south directions (Fig 5a).
Fig. 5b shows the amplitudes of velocities for s0 ¼ 10�5 and
k ¼ 0:1 for comparison with slippery sacks simulations pre-
sented below.

(2) Slippery sacks solutions.
For the first simulation we use a non-dimensional gravity
~g ¼ 0:16, which corresponds to using a realistic value of
gravity for a 5 km deep ocean. We represent our ocean with
a 10 by 10 array of sacks with an overlap parameter of 1 (i.e.,
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sack overlap of 1 at t ¼ 6. (c) Velocity vectors for a sack overlap of 3 at t ¼ 100. (d) Velocit
of 3 with g ¼ 0:001 at t ¼ 50; 000. (f) simulated (solid) and analytic (dotted) stream fun
a cross-section of the pile aligned with a row of sack centers
looks like Fig. 2b). At first the sacks begin rotating anticycl-
onically (Fig. 6a) mimicking the circulation shown in the
analytic solution (Fig. 5). However, this motion does not per-
sist long, and by t ¼ 6 a cyclonic gyre has developed
(Fig. 6b). With time the circulation oscillates between cyclo-
nic and anticyclonic and weakens (not shown). Note that the
magnitude of the circulation is about an order of magnitude
smaller in the pile of sacks than in the analytic solution
(compare the vector amplitudes in Figs. 5b and 6a and b).
The simulated circulation is reminiscent of the oscillation
of the lone slippery sack in a valley when the wind stress
does not impart enough energy for the sack to escape the
potential energy well (Fig. 4b, A = 0.15, 0.20 m cases). More-
over, the same physical reasoning may be used to interpret
the oscillating gyre. In their initial state the pile of sacks
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ctions for a sack overlap of 3 and g ¼ 0:001 at t ¼ 50;000 (contoured as in Fig. 5a).



Table 1
Simulations of the Stommel solution.

Simulation name s0 k Radius g Overlap

Low-resolution 10�5 0.05 0.1 0.001 3
Medium-resolution 10�5 0.05 0.05 0.0005 5
Moderately non-linear 3:2� 10�5 0.01 0.025 0.0005 5

6 Note that because the horizontal mixing scheme essentially treats sacks as points,
it is actually possible to simulate circulations narrower than a sack radius with the
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has a perfectly level free surface which corresponds to the
minimum potential energy state of the system. When the
sacks begin rotating, even if their velocity vectors are non-
divergent, it is inevitable that bumps and pits will develop
in the free surface of the pile, which correspond to a higher
potential energy state. Evidently, the energy imparted by the
wind stress is not sufficient for the system to escape the
potential energy well, so the sacks oscillate weakly, main-
taining their initial positions in the array. Moreover, when
gravity is reduced slightly and the simulation is repeated,
the circulation oscillates with a lower frequency, which is
consistent with the potential energy well interpretation.

One way to reduce the potential energy barrier is to use thinner
sacks that have a greater degree of overlap. For example, suppose
we represent the ocean with a 30 by 30 array of sacks with an over-
lap parameter of 3. Note that the sacks have the same radius as be-
fore, but are now 9 times as thin (see Fig. 3b–d for an illustration of
increasing sack overlap, but note that in the three-dimensional case
the reduction in sack vertical thickness is proportional to the square
of the overlap parameter). When these sacks begin to rotate around
the basin, smaller pits and bumps develop in the free surface, and
there is a smaller potential energy well for the system to escape.
When the sacks are exposed to the wind stress, a persistent, strong
anticyclonic circulation develops that is very much like the analytic
solution (Fig. 6c). However, this circulation is not completely stea-
dy. At later times, when sacks have departed significantly from their
initial positions, small-scale variability develops as well (e.g.,
Fig. 6d). If the steady solution were unstable, we would expect such
variability to spontaneously develop from a theoretical viewpoint
(e.g., Sheremet et al., 1997; Sheremet, 2002). However, in this case
the damping is very strong making it likely that the linear steady
solution is stable. Rather, it appears that the variability is caused
primarily by local potential energy barriers to sacks crossing over
another that deflect sacks paths from analytic streamlines. Tests
show that the variability can be reduced in three ways: (1) by
decreasing gravity (or using gravity wave retardation in three-
dimensional simulations); (2) by using thinner sacks, and (3) by
including viscosity. For example, Fig. 6e shows that when we repeat
the simulation depicted in Fig. 6d using ~g ¼ 0:001 the small-scale
variability is much weaker, even after running the model out to
t ¼ 50;000. Alternatively, increasing the sack overlap parameter
to 5 and using a viscosity m ¼ 1:25� 10�4 reduces the noise and
produces a simulation of comparable quality (not shown). For the
simulations presented later in this paper we use a combination of
these approaches to control small-scale variability.

Since the figures containing sack velocities for every sack (e.g.,
Fig. 6e) are busy and often difficult to compare with analytic solu-
tions, for many simulations presented in the remainder of the paper
we compare simulated and analytic stream functions. For example,
Fig. 6f is such a plot that corresponds to the sack velocities shown in
Fig. 6e. Note that both the simulated and analytic solutions use the
same contour values, allowing for a careful comparison of both the
flow patterns and the amplitude of the circulation. In this case the
flow patterns are quite similar, and contours for the simulation lie
just inside those for the analytic solution, meaning that the simu-
lated circulation is slightly weaker than the analytic solution.

5. Simulations of western boundary currents

In this section we present simulations of the Stommel and
Munk solutions conducted with the SSOM. The purpose for carry-
ing out these simulations is to test the model’s ability to generate
wind-forced gyres whose structures depend on either lateral or
bottom friction. Most of the simulations are in linear regimes,
and these are compared with analytic solutions. We also present
two simulations that are moderately non-linear.

5.1. Simulations of the Stommel solution

Parameter values for simulations of the Stommel solution are
listed in Table 1. The simulations include low- and medium-resolu-
tion runs in linear regimes, and a moderately non-linear simula-
tion. In all cases we use a low value for gravity and a sack
overlap parameter of at least 3 to minimize problems associated
with potential energy barriers to sacks crossing one another.

As a starting point, we test the SSOM’s ability to reproduce the
Stommel solution for k ¼ 0:05 with relatively large sacks. We use a
sack radius (0.1) that is actually twice the theoretical boundary
current width (k).6 Only 900 sacks are used for this simulation,
which allows velocity vectors to be plotted for every sack making
the behavior of individual sacks easy to discern. A quasi-steady cir-
culation develops with a western boundary current that has
roughly the same width and amplitude as that predicted by linear
theory (e.g., Fig. 7a). While there is some evidence of chaotic
behavior, especially in the upper-left quadrant, the time-averaged
stream function has a similar structure to that for the linear solu-
tion (Fig. 7b). The circulation is a bit weaker than predicted with a
maximum value for the simulated stream function that is 8% lower
than that for the analytic solution. However, considering that the
theoretical current is under resolved, this is not a discouraging re-
sult. Moreover, when narrower, thinner sacks are used the SSOM
simulation becomes more like the analytic solution (Fig. 7c). Due
to the fact that the SSOM is actually modeling a different physical
system (with sloping walls and a free surface) than that to which
the analytic solution applies, we do not expect a precise reproduc-
tion of the analytic solution, nor do we attempt to discern a rate of
convergence. However, we do consider the qualitative behavior of
the SSOM in a moderately non-linear regime. By reducing k to 0.01
and increasing s0 to 3:2� 10�5 we increase the scale of the inertial
boundary layer to be equal to that of the Stommel boundary layer,
which should enhance the relative importance of non-linear terms.
Fig. 7d shows that as expected the model produces a narrow and
intense western boundary current, which continues along the
northern boundary for a time. This figure closely resembles Fig. 6
in Veronis (1966), which is a simulation of the Stommel solution
in a similar parameter regime. In particular, both simulations exhi-
bit the ‘‘looping” of streamlines in the northwest corner of the ba-
sin, which is the primary departure from the linear solution.

5.2. Simulations of the Munk solution

In the simulations of the Stommel solution, the linear velocity
damping coefficient k determines the width of the western bound-
ary current. In this section we set k ¼ 0 and model western bound-
ary currents whose widths depend on the horizontal viscosity
coefficient m. Once again we conduct low- and medium-resolution
simulations in linear regimes, and we explore the qualitative
SSOM.
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Table 2
Simulations of the Munk solution.

Simulation name s0 m Radius g Overlap

Low-resolution 10�5 1:25� 10�4 0.1 0.001 3
Medium-resolution 10�5 1:25� 10�4 0.05 0.0005 5
No-slip 10�5 1:25� 10�4 0.05 0.0005 5
Moderately non-linear 3:2� 10�5 1� 10�6 0.025 0.001 3
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behavior of the model in a moderately non-linear regime. While
most of the runs employ a free-slip boundary condition (as in
our simulations of the Stommel solution), we also carry out one
simulation with a no-slip boundary condition. For most of the runs
we use m ¼ 1:25� 10�4, which, according to linear theory, should
produce a boundary current with a non-dimensional width of
dm ¼ 0:05. The model parameters other than m and k are the same
as those used in the Stommel runs (Table 2).

The low-resolution version of the model produces a western
boundary current whose width and intensity are approximately
consistent with theory (Fig. 8a). The circulation is quasi-steady,
and, apart from some small-scale variability and some meandering
of the northern-quarter of the boundary current, it changes little
once the initial adjustment has occurred. The small-scale variability
is weaker in this case than in the Stommel runs (e.g., compare Figs.
7a and 8a), presumably because horizontal viscosity selectively
damps small-scale flow features. The time-averaged stream func-
tion is plotted in Fig. 8b along with the analytic streamlines. The
two solutions have similar flow patterns, but the slippery sacks
solution (solid lines) has a weaker gyre and western boundary cur-
rent. The maximum value of w for the simulation is 15% less than
that for the analytic solution. Considering that the sack radius
(0.1) is twice the Munk boundary layer scale (0.05), it is not surpris-
ing that the model produces a weaker circulation than the theory
predicts (i.e., the western boundary current is under resolved).
Some other factors that could contribute to this discrepancy include
the implementation of horizontal diffusion, sloping topography
near the boundaries, mixing by small-scale variability, and the fact
that model has a free surface. When thinner and narrower sacks are
used, the simulated circulation becomes more like the analytic
solution (Fig. 8c). The fidelity of SSOM solutions to analytic solu-
tions does not seem particularly sensitive to the choice of boundary
condition; Fig. 8d shows the flow pattern for a run with the no-slip
boundary condition. Overall, the performance of the model is sim-
ilar to that for the corresponding free slip simulation (Fig. 8c) with
an amplitude difference of a few percent from the analytic solution.

The Munk simulations discussed above are for parameter re-
gimes that are only weakly non-linear. We now adjust parame-
ters so that non-linear effects become more significant, as we
did for the Stommel simulations. By reducing v and increasing
s0 we increase the scale of the inertial boundary layer to be the
same as that of the Munk boundary layer, which should enhance
the relative importance of non-linear terms. Fig. 8e shows that as
expected the model produces a more narrow and intense western
boundary current. Other differences from linear simulations in-
clude the continuation of the boundary current along the north-
ern boundary, and the presence of a recirculation gyre in the
northwest corner of the basin. These features have been noted
in previously pub(e.g., Bryan, 1963; Ierley, 1987).

6. Building an idealized model of the North Atlantic Ocean

Taking advantage of the new horizontal mixing scheme and
using what we have learned from experiments with homogeneous
oceans, we now build an idealized model of the North Atlantic
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Ocean with the SSOM. We actually have two purposes for develop-
ing this model: (1) to test the SSOM’s ability to simulate wind-
forced gyres and overturning in a more complicated and realistic
setting; and (2) to prepare the SSOM for studies of meridional over-
turning, oceanic heat transport and the carbon cycle. We compare
simulations conducted with the SSOM to similar simulations car-
ried out with the Massachusetts Institute of Technology general
circulation model (MITgcm), but which are run at a much higher-
resolution. Our goal is to reproduce the basic temperature and
circulation structure the occurs in the MITgcm in a much lower-
resolution version of SSOM that can be run on a small desktop or
laptop computer.7 We also explore how circulations change in
7 The North Atlantic simulations presented in this paper were run on a Mac Mini
with a 2 GHz 65 nm Core 2 Duo CPU.
the limit of no tracer diffusion, an exercise for which the SSOM is
well suited.

6.1. The ocean and its forcing

The ocean and forcing we use are similar to those used by Fol-
lows et al. (2002) to study the solubility pump of CO2 in the sub-
tropical oceans. The ocean is bounded by the 60� W and 0� E
longitude lines, and by the 21� S and 69� N latitude lines, and it
is 4500 m deep. The wind stress forcing and restoring function
for temperature are shown in Fig. 9. They are both analytic approx-
imations of National Center for Environmental Prediction reanaly-
sis along 40 W for December through February 1968–1996. We use
an equation of state that is a linear function of temperature:
q ¼ q0ð1� aTÞ
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where q0 ¼ 1000 kg m�3, a ¼ 0:0002 K�1, and T is temperature in
degrees Celsius. The surface heat flux H is proportional to the differ-
ence between the average temperature of the upper 25–30 m Ts and
the restoring temperature Tr:

H ¼ H0ðTs � TrÞ

where H0 ¼ 50 Wm�2K�1. Both heat fluxes and wind stress forcings
are distributed over the upper 25–30 m. The initial ocean tempera-
ture is a constant 2 �C. We use a horizontal viscosity of 105 m2 s�1

(i.e., Munk boundary layer width of about 2� longitude), and a ver-
tical viscosity of 10�3 m2 s�1. Vertical tracer diffusion is a constant
5� 10�5 m2 s�1 following Follows et al. (2002), and horizontal tra-
cer diffusion is set to zero. The time step is 3600 s. We conduct sim-
ulations with two resolutions: (1) for comparisons of SSOM results
and MITgcm results we use sacks with a 3� radius in both latitude
and longitude; and (2) for the study of the effect of removing tracer
diffusion we use a sack radius of 4�. In both cases we use a sack
overlap parameter of 3 when initializing layers. However, the sacks
are more or less randomly distributed by the end of the simulations
(after 300 years for the 3� run, and 700 years for the 4� run).

We developed the basin geometry in stages that represent a
transition from the parameter regime of the non-dimensional sim-
ulations to one suitable for the Atlantic Ocean (Fig. 10). We started
with shallow oceans (e.g., Fig. 10a), and we reduced the external
pressure gradient by a factor of about 12 (GWR parameter of
c ¼ 0:08; H04), which has the same effect on the potential energy
barrier to sacks circulating as the factor of 12 reduction in gravity
used for the medium-resolution Munk simulations presented in
Section 5. Applying the forcing shown in Fig. 9 to this ocean yields
a horizontal circulation pattern (Fig. 11a) similar to that produced
by MITgcm (Fig. 11d), but with a stream function amplitude reduc-
tion on the order of 15%. This result is consistent with the results of
the low-resolution non-dimensional Munk simulations (Fig. 8a and
b and Table 2). We then made the ocean successively deeper, first
by increasing the basin depth and the vertical thickness of each
sack (Fig. 10b), and then by adding layers of even thicker sacks
(Fig. 10c and d). We further reduced the GWR parameter, using val-
ues of 0.028, 0.014, and 0.007 for the oceans shown in Fig. 10b–d,
respectively. Such reductions in c allow the use of long time steps
and they also reduce the potential energy barrier to circulating
sacks (Section 4), which is necessary when both the vertical thick-
nesses of sacks are increasing, and the average amplitudes of sack
velocities are decreasing as the ocean gets deeper. In all cases the
gross structure of the horizontal flow is similar (Fig. 11a–c), but
as the depth of the ocean increases regions of positive (negative)
stream function near the western boundary are enhanced (re-
duced), because the southward component of deep overturning
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Fig. 11. Horizontal stream function (5 Sv contours) for (a) the 200 m deep ocean, (b) the 900 m deep ocean, (c) the 4500 m deep ocean, and (d) the MITgcm run.
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(i.e., the deep western boundary current) is displaced eastward of
the northward component. Note that one consequence of the using
such gravity wave retardation is that surface height perturbations
are amplified by a factor of 1=c.8 For the ocean shown in Fig. 10d,
the standard deviation in the free surface after 300 years of integra-
tion is 54 m. While these perturbations would be unacceptable for
some applications, they do not have a large impact on the structure
of the upper ocean, and a1–2% change in the ocean depth is not seri-
ous side effect for our purposes. Moreover simulations conducted
with less gravity wave retardation (e.g., c ¼ 0:01;0:014) produced
8 Note these free surface anomalies are expected from the equations being solved
(i.e., are a physical side effect of using gravity wave retardation), and are not a direct
artifact of sack thickness.
very similar results (but required shorter time steps and more
computations).

6.2. Spherical geometry

The form of spherical geometry suggested by H04 is used for
this study. Sack radii are held fixed in terms of degrees latitude
and longitude, so conservation of mass dictates that sacks become
vertically thicker as they move northward. For the full-depth basin
(Fig. 10d), sacks are on average about 33 m thick in the upper layer
(0–300 m depth), 67 m thick in the middle layer (300–900 m
depth), and 100 m thick in the lower layer (900–4500 m depth).
Sack masses are quantized (i.e., are integral multiples of
3:06� 1015 kg), and a target mass quantum number is set for each
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region: 1 in the upper layer, 2 in the middle layer, and 4 in the low-
er layer. As sacks enter regions with different target quantum num-
bers they are either sliced along their vertical midpoints or joined
with nearby sacks to achieve the desired quantum number. While
the joining of sacks introduces a small amount of mixing, this is
contained by creating density classes and only allowing sacks in
the same class to be joined together. One advantage of quantizing
sack masses is that, even with dividing and merging sacks, individ-
ual mass elements can be tracked throughout the course of a
simulation.
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Fig. 13. Vertical cross-sections of temperature and meridional current along 30 N
for (a) SSOM and (b) MITgcm. Upward vectors indicate northward flow.
6.3. Comparing SSOM and MITgcm results

As noted above, the SSOM and the MITgcm produce wind-
forced gyres with similar horizontal flow patterns (Fig. 11c and
d). The surface fields produced by the two models are also similar
(Fig. 12a and b). In both runs a western boundary current extends
from about 15 N to about 50 N, and an equatorial cold tongue with
westward flow extends from the eastern boundary to around 40 W.
Not surprisingly, the MITgcm, which has three times the horizontal
resolution of the SSOM, generates a narrower western boundary
current (Fig. 12b). The vertical shear in the western boundary cur-
rent, and the east-west slope of the thermocline are also similar in
the two models (Fig. 13a and b), although the water is slightly cool-
er near the western boundary around 800 m in the SSOM (Fig. 13a
and b). The most notable differences in the meridional flow are the
fact that the return flow in the SSOM is weaker and farther east-
ward, which is probably attributable to the lower horizontal reso-
lution (Fig. 13a and b).

Even at very low-resolution, the SSOM is able to produce a
north-south temperature pattern quite similar to that generated
by MITgcm (Fig. 14a and b). Not only is the thermocline shape
and depth similar to that produced by the MITgcm, but also many
of the individual temperature contours lie in similar positions in
the upper 500 m. For example, the vertical spreading of the iso-
therms at the depth (�100 m) of the equatorial undercurrent is
reproduced in both models. The 3 C contour is somewhat deeper
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in the northern basin in the MITgcm run (Fig. 13b), but this more
likely a consequence of differing basin geometry than of differing
numerical approaches.

We compare the meridional overturning of the two models in
temperature coordinates,9 because the overturning structure is less
sensitive to basin geometry in this coordinate system (Park and
Bryan, 2000). Overall, the two models produce both shallow and
deep overturning with a similar structure and amplitude
(Fig. 15a and b). In both models there are upper equatorial cells
with amplitudes of 12–15 Sv roughly 10� north and south of the
equator at a temperature of about 24 �C. Similarly, midlatitude
overturning cells with amplitudes in the range of 13–16 Sv occur
around 38 N, 19 �C in both models. The greatest differences occur
in the deep overturning cells centered near 58 N, 3 �C, which pen-
etrate farther south in the MITgcm run (Fig. 15b). However, this
difference could be largely a consequence of the differing basin
geometries (Park and Bryan, 2000).

Overall, the comparison of SSOM and MITgcm runs for an ideal-
ized North Atlantic Ocean show that the SSOM produces reason-
able temperature structures and circulation patterns, especially
considering its relatively low-resolution.

6.4. Removing temperature diffusion

One unique feature of the SSOM is that it can be run without
any tracer diffusion. In this section we compare SSOM runs that
are identical except for the fact that vertical tracer diffusion is in-
cluded in one, and it is set to zero in the other. We use a lower-res-
olution (4� sack radius, 44–188 m sack thicknesses) for these runs
because they are extended to a longer period of time (700 years).
We construct the basin in a similar manner as before, except that
9 Which is equivalent to using a density coordinate because density is a linear
function of temperature.
the upper two layers are deeper, covering 0–400 m and 400–
1200 m, respectively (Fig. 16). However, because of the greater
sack radius the overall slope of the basin walls is similar (compare
Figs. 10d and 16). We adjust the position of the meridional bound-
aries slightly to 20 S and 68 N in order to guarantee that there is a
horizontal mixing row centered directly on the equator, and we
also adjust the restoring temperature slightly to ensure the mini-
mum restoring temperature occurring at the northern boundary
is the same as before.
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Decreasing the resolution causes only minor changes in the
gross surface, thermocline, and overturning structures (compare
Figs. 17a, 18a, 19a with Figs. 12a, 14a, and 15a, respectively). How-
ever, removing tracer diffusion causes important changes to each
of these fields. While the surface signature of the western bound-
ary current changes only slightly (i.e., it is a little weaker), the
equatorial cold tongue and accompanying westward flow all but
vanish (Fig. 17b). The SSOM run without tracer diffusion also pro-
duces a much shallower thermocline with a stronger temperature
gradient (Fig. 17b), which is consistent with the sensitivity of ther-
mocline depth in z-coordinate ocean models to vertical diffusivity
(e.g., Bryan, 1987). Finally, the SSOM run without tracer mixing
exhibits overturning of a fundamentally different nature (compare
Fig. 19a and b). In the run with temperature diffusion there is vig-
orous overturning near the northern boundary that is approxi-
mately in a steady state by 700 years (Fig. 19a), but in the run
without tracer mixing the northern most cell continues to weaken
with time, and it has mostly disappeared by 700 years (Fig. 19b).
Moreover, in the former case very cold water circulates upward
into the equatorial thermocline (Fig. 19a), but in the latter case
the overturning primarily amounts to shallow, wind forced cells
(Fig. 19b). As noted by Boccaletti et al. (2005), the amplitude of
heat transport is related to the perturbation in temperature follow-
ing closed streamlines of meridional flow. In the run without tracer
diffusion, individual streamlines span a much smaller temperature
range (Fig. 19), and average northward heat transport from 10 to
40 N is reduced from 0.85 PW to 0.30 PW, that is, by almost a factor
of 3 (Fig. 20). Because this model lacks important features of the
Atlantic Ocean (e.g., the Antarctic Circumpolar Current), it is pre-
mature to assume that these results are directly applicable to heat
transport in the Atlantic. However, they do illustrate one of the
important potential uses for the SSOM – exploring how circula-
tions and heat transport change in the no-tracer-diffusion limit.
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10 The Stommel and Munk simulations are carried out with a homogeneous ocean,
and steady solutions are only weakly sensitive to the value of gravity used. In more
realistic circumstances gravity wave retardation (Jensen, 1996) can be applied to
achieve the same effect.
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7. Summary and discussion

In this study we further develop the slippery sacks ocean model
(SSOM), and we use it to simulate western boundary currents in
homogeneous oceans and to model wind-forced gyres and meridi-
onal overturning in an idealized model the North Atlantic Ocean.

A new model feature that is introduced for this study is horizon-
tal mixing. Sacks are allowed to exchange momentum with their
nearest neighbors in the x- and y-directions. Tests reveal that the
mixing scheme behaves similarly to traditional finite-difference
diffusion in Eulerian models.
We test the model’s ability to reproduce the Stommel and Munk
solutions to the classical western boundary current problem. In lin-
ear regimes the model generates circulations that are consistent
with theory, and in moderately non-linear regimes the model pro-
duces appropriate departures from linear solutions, including a
boundary current that continues along the northern boundary for
a time. We find that the key to producing reasonable results is to
reduce potential energy barriers (PEBs) to sacks crossing over
one another, which can be done in two ways: (1) by using verti-
cally thin sacks; and (2) by reducing the amplitude of gravity.10

We find that including horizontal viscosity also helps to reduce noise
generated by PEBs.

Taking advantage of the new mixing scheme and lessons
learned from simulations of homogeneous oceans, we construct
an idealized model of the North Atlantic Ocean. We compare sim-
ulations conducted with the SSOM to similar simulations con-
ducted with the Massachusetts Institute of Technology general
circulation model (MITgcm). The SSOM and the MITgcm produce
similar wind-forced gyres, thermocline structure, and meridional
overturning. The SSOM is also used to explore how circulations
change in the limit when tracer diffusion goes to zero.

Overall, this study represents several additional steps in the
development of a full-fledged Lagrangian oceanic general circula-
tion model that has certain capabilities that distinguish it from
all other existing ocean models. Moreover, the simulations pre-
sented here provide a better understanding of the circumstances
under which piles of slippery sacks behave like oceans, and will
provide guidance for future simulations conducted with the SSOM.
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