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ABSTRACT

The relative roles of clouds, surface evaporation, and ocean heat transport in limiting maximum sea surface
temperatures (SSTs) in the western Pacific warm pool are investigated by means of simple and intermediate
coupled ocean–atmosphere models. The authors first take an analytical approach by constructing a conceptual
two-box model that contains dynamic coupling among the Walker circulation, SST, and ocean thermocline and
thermodynamic coupling, which includes shortwave and longwave cloud forcing and latent and sensible heat
fluxes at the ocean surface. In a realistic parameter regime, the three mechanisms mentioned above are all
essential in limiting the SSTs within the observed range. The lack of any one mechanism would lead to an
equilibrium SST that is too high, although unstable warming due to the super greenhouse effect would not occur.
The analysis of the surface heat balance from the simple box model indicates that in the western Pacific warm
pool, cloud reflection has a dominant effect, followed by evaporation and ocean dynamics.

The simple model results are further evaluated numerically by using an intermediate coupled ocean–atmosphere
model. With the forcing of the annual-mean solar radiation, this model is capable of simulating a realistic annual
mean climate in the tropical Pacific. The authors then introduce an initial SST perturbation and examine how
the perturbation evolves with time in the presence of clouds, surface evaporation, and ocean dynamic processes.
Four experiments have been designed. In the first three experiments, each of the three processes is studied
separately; in the last experiment, they are combined. The intermediate model results indicate that in the western
Pacific warm pool, the largest negative feedback comes from the cloud shortwave radiation forcing, followed
by the surface evaporation and ocean heat transport. The sensitivity of the model to various initial SST pertur-
bation patterns is also investigated.

1. Introduction

The tropical Pacific is characterized by a strong east–
west sea surface temperature (SST) asymmetry, with
the warmest water in the west and an equatorial cold
tongue in the east. This SST asymmetry is reflected in
the surface pressure gradient that drives an east–west
equatorial atmospheric overturning, the Walker circu-
lation (Bjerknes 1969). Atmospheric convection asso-
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ciated with the rising branch of the Walker circulation
is triggered primarily when SSTs exceed about 26.58C.
Long-term records indicate that maximum SST in the
warm pool is limited to below 318C. A central question
is why this maximum SST is within a few degrees of
the convection threshold.

Newell (1979) first addressed the issue by using a
simple surface heat balance model. He showed that in
the tropical ocean under a clear sky, the outgoing surface
fluxes, which include longwave radiation and latent and
sensible heat fluxes, are balanced by the incoming solar
radiation at an SST of about 308–318C. With increased
SST, the latent heat flux increases considerably. This
prompted Newell to conclude that evaporation was the
primary mechanism that limited the climatological SSTs
to about 308C.

Newell’s conclusion was modified by Graham and
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Barnett (1987), who noticed that in the upper range of
SST, clouds associated with deep convection increase
rapidly with SST. By taking into account the effect of
clouds in the simple model of Newell, they obtained an
equilibrium SST of 288C, a temperature coinciding with
the peak of the observed SST population curve in the
Tropics. From this result, they suggested that cloud re-
flection, in addition to the evaporative cooling, placed
an upper limit for SSTs.

A more detailed analysis of cloud–SST feedback was
conducted by Ramanathan and Collins (1991) using sat-
ellite and ship data obtained during the 1987 El Niño.
They observed that in the upper range of SST, the green-
house effect of water vapor increases with SST at a rate
that exceeds the rate at which radiation is emitted from
the ocean surface. As a result of this ‘‘super greenhouse
effect,’’ SSTs grow unbounded until the clouds become
thick enough to shield the ocean from solar radiation
and arrest further warming. Their major conclusion is
that the SST is regulated mainly by a strong negative
feedback of cirrus clouds induced by deep convection.
Ramanathan and Collins (1992) further argued that sur-
face evaporation could not function as a limiting mech-
anism in the warmest oceans because 1) evaporation
adds moisture to the atmospheric column and thus en-
hances the super greenhouse effect and 2) along the
equator, wind speeds in general tend to be smaller to-
ward the warmer ocean.

The Ramanathan–Collins ‘‘thermostat’’ hypothesis
was questioned by Wallace (1992) and Fu et al. (1992),
who both argued that the deep convective clouds in the
Tropics are generally associated with large-scale at-
mospheric circulation, not local SST alone, and that
surface evaporation (due to the nonlinear nature of the
Claussius–Clapyron equation) can effectively cool the
ocean surface to the observed range. Hartmann and
Michelsen (1993) noted that while the shortwave forcing
in the convective regions is large, the area-averaged SST
in the tropical Pacific shows no sensitivity to the basin-
averaged cloud forcing. Analysis of four years of earth
radiation budget by Arking and Ziskin (1994) showed
that tropical clouds are largely affected by SSTs, but
the influence of cloud radiative forcing on SST is less
clear. Liu et al. (1994) argued that three-dimensional
atmospheric circulation plays a more important role than
the local cloud–SST relationship.

Sun and Liu (1996), Clement et al. (1996), Seager
and Murtugudde (1997), and Liu and Huang (1997) pro-
posed that ocean dynamics may play an important role
in regulating tropical SSTs. These studies emphasized
different aspects of ocean processes, including zonal and
vertical heat transport at the equator (Sun and Liu 1996;
Clement et al. 1996), upper-ocean thermocline displace-
ment (Seager and Murtugudde 1997), and subtropical–
equatorial heat exchange (Liu and Huang 1997). Using
a simple box model, Sun and Liu (1996) demonstrated
that even without cloud reflection and surface evapo-
ration, ocean dynamic processes alone (through zonal

and vertical heat transport) can act as a thermostat to
regulate tropical SSTs.

Waliser (1996) investigated the effect of transient at-
mospheric motion (primarily intraseasonal oscillations)
on the formation of ocean hot spots. He defined hot
ocean spots as regions where SST is greater than
29.758C. Using a variety of data sources [including sat-
ellite observations, Consolidated Ocean Atmosphere
Data Set (COADS), National Centers for Environmental
Prediction (NCEP) and European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalyses], he ex-
amined composites of the atmospheric and oceanic con-
ditions before and after a hot spot is formed and found
that the descending (ascending) phase of the Madden–
Julian oscillation (MJO) is often associated with the
formation (decay) of the hot spots. He found that the
effect of cloud shortwave forcing in general exceeds
that of evaporation by a factor of 2.

These studies and many others have greatly advanced
our understanding of the formation of the warm pool
and the mechanisms that regulate tropical SSTs. How-
ever, some key issues remain to be resolved. For in-
stance, several of the individual studies (e.g., Raman-
athan and Collins 1991; Wallace 1992; Sun and Liu
1996) isolated different processes. Some of the studies
(e.g., Waliser and Graham 1993) have limited appli-
cability because their conclusions were derived based
on local, not coherent, dynamic relationships. Others
(e.g., Liu et al. 1994) are actually directed toward the
regulation mechanisms of the annual cycle and El Niño–
Southern Oscillation (ENSO) which do not necessarily
reflect the processes regulating maximum SSTs in the
warm pool. The large-scale motion associated with MJO
can indeed change SSTs on a shorter (intraseasonal)
timescale, but its mean effect on long-term climate is
unclear.

The present study is an attempt to overcome some of
the above shortcomings by considering possible SST-
regulation mechanisms in a unified dynamic framework.
We shall investigate the relative roles of these processes
(cloud vs surface evaporation vs ocean dynamics) in
limiting maximum SSTs in the Tropics. We are partic-
ularly interested in whether each individual mechanism
is sufficient to limit the SSTs to the observed range or
whether it is necessary to require two or all three mech-
anisms to work together. To achieve the goal, we take
both an analytical and a numerical approach. In section
2, a simple analytical two-box model is constructed to
obtain some preliminary results. In section 3, these re-
sults are compared with those obtained from a more
sophisticated, intermediate coupled ocean–atmosphere
model. A summary is given in section 4.

2. Analysis of a simple two-box model

In this section, a simple analytical model is used to
understand processes that limit maximum climatological
SSTs in the western Pacific warm pool.
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FIG. 1. Schematic illustration of the two-box model (after Sun
1997).

a. Model

A simple coupled ocean–atmosphere model is con-
structed with the Lindzen–Nigam (1987) model as its
atmospheric component and the Cane–Zebiak model
(Cane 1979; Zebiak and Cane 1987) as its oceanic com-
ponent. For simplicity, the ocean surface is divided into
two equal-volume boxes (see Fig. 1), with T1 and T2

representing the averaged temperature over the western
and eastern equatorial Pacific, respectively. The time
change rate of the SST in the two boxes is determined
by horizontal and vertical temperature advection and the
surface heat fluxes, which include shortwave and long-
wave radiation and latent and sensible heat fluxes, that
is,

dT (T 2 T ) Q1 2 1 15 2u 1 (2.1)cdt L rC hx w

dT (T 2 T ) Q2 2 sub 25 2w 1 , (2.2)edt h rC hw

where uc denotes the zonal ocean current velocity in the
central Pacific; we denotes the vertical velocity at the
base of the mixed layer in the eastern Pacific; Lx and h
denote the half length of the Pacific basin and the depth
of an ocean mixed layer, respectively; Tsub is the ocean
subsurface temperature; Q represents the net heat flux
at the ocean surface; subscripts denote box 1 and 2,
respectively; r denotes the density of water; and Cw the
specific heat of water.

The zonal SST gradients between T1 and T2 determine
the surface zonal wind stress in the central Pacific (Lind-
zen and Nigam 1987), which further drives the ocean
Ekman current and upwelling through surface layer
ocean divergence (Zebiak and Cane 1987). Therefore,
we have

A
(x)t 5 mU 5 m (T 2 T ), (2.3)c 2 1r La x

(x)t mA
r u 5 5 (T 2 T ), (2.4)o c 2 1rh rhr La x

h(H 2 h) u h(H 2 h)acw 5 2 5 2 (T 2 T ), (2.5)e 2 1H L HLx x

where m 5 raCDV0 is a surface wind stress coefficient,
ra is the density of surface air, CD is the drag coefficient,
V0 is a constant wind speed, ra and ro denote the Ray-
leigh friction coefficients in the atmospheric and oceanic
boundary layers, A represents the SST-gradient mo-
mentum forcing coefficient (Wang and Li 1993), H is
the mean depth of the ocean thermocline across the
equatorial Pacific, and a 5 (mA)/rhraroLx.

Following the scale analysis by Neelin (1991) and Li
(1997b), the zonal gradient of the ocean thermocline at
the equator is in a Sverdrup balance with the zonal wind
stress forcing. Therefore, we have

Tsub 5 Tc 1 gh 5 Tc 2 b(T1 2 T2), (2.6)

where Tc denotes a constant zonally averaged ocean
temperature at the base of the ocean mixed layer, h
represents the thermocline depth anomaly, g is a co-
efficient representing the strength of SST–thermocline
feedback, b 5 (gmA)/2rra , and c0 is the first baro-2c0

clinic mode gravity wave speed in the upper ocean.
The net heat flux at the ocean surface contains solar

radiation, longwave radiation, and latent and sensible
heat fluxes, which may be expressed as

Q 5 S 2 E 1 G 2 W, (2.7)

where S is the shortwave radiation at the surface; E and
G are upward and downward longwave radiative fluxes,
respectively; and W is latent and sensible heat fluxes.

The shortwave radiation at the ocean surface may be
further divided into two terms:

S 5 Sc 1 Cs, (2.8)

where Sc denotes the clear-sky solar radiation, which
can be calculated based on the annual mean solar ra-
diation at the top of the atmosphere (424 W m22) with
reductions for scattering (0.08), absorption (0.22), and
ocean albedo (0.06) (Payne 1972; Liou 1980); and Cs

, 0 denotes the cloud shortwave radiation forcing.
Following Kiehl and Briegleb (1992) and Waliser and

Graham (1993), the upward and downward longwave
radiative fluxes may be written as

4E 5 0.94sT (2.9)

G 5 10.64T 2 2800. (2.10)

In (2.10), the greenhouse effect of water vapor and
clouds has been parameterized through SST.

The surface latent and sensible heat fluxes depend on
the total wind speed and air–sea specific humidity and
temperature differences:

W 5 mL(qs 2 qa) 1 mCp(T 2 Ta), (2.11)

where Cp is the specific heat of the air and L is the latent
heat. In (2.11), we have assumed a constant wind speed
because the current model only predicts the zonal wind
component in the central Pacific. (For the control case,
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FIG. 3. Heat flux losses (unit: W m22) associated with the shortwave
cloud forcing, surface evaporation, and ocean dynamic processes in
the western Pacific for the control run (dark shaded) and the case of
g 5 0 (light shaded).

FIG. 4. Dependence of equilibrium temperatures T1 and T2 (unit:
8C) to the cloud–SST feedback coefficient, ]Cs/]T, for the control
case when V0 5 5 m s21 (solid lines) and a case with V0 5 6 m s21

(dotted lines).

Figure 2 indicates that all three mechanisms are im-
portant in obtaining the observed climatological SST
values. The equilibrium temperature in the western Pa-
cific would reach 368C without the cloud reflection,
348C without the surface evaporation, and 328C without
the ocean heat transport. The discrepancies are all large
in the eastern Pacific.

The relative roles can be further analyzed by diag-
nosing the surface heat budget in the SST equation [Eq.
(2.1)]. Denoting 2(]Cs/]T)(T1 2 T0) as the surface heat
flux reduction due to the cloud shortwave forcing,
(]W/]T)(T1 2 T0) as the latent heat flux increase as the
SST increases from T0 to T1, and 2rCwha(T1 2 T2)2/Lx

as the amount of the ocean heat transport, one can read-
ily see (Fig. 3) that as the SST increases from T0 to T1,
the solar radiation decreases by 67 W m22 while the
latent heat flux increases by 31 W m22. Meanwhile, the
ocean transports 28 W m22 of heat from the eastern
Pacific to the western Pacific. Note that the calculated
shortwave cloud forcing agrees well with recent Inter-
national Satellite Cloud Climatology Project (ISCCP)
data analyses by Laszlo and Pinker (1993), who reported
an average of cloud shortwave forcing of 60–80 W m22

over the equatorial western Pacific. Thus, the effect of
the cloud reflection has a large contribution and is com-
parable to the combined effect of the surface evapora-
tion and ocean dynamics.

c. Sensitivity test

To test the sensitivity of the model, we first examine
two key parameters in the model: ]Cs/]T and V0. The
former reflects the strength of the cloud–SST feedback

whereas the latter influences the intensity of the surface
latent and sensible heat fluxes. The range of ]Cs/]T is
based on a linear fit of the satellite analysis by Raman-
athan and Collins (1991, their Fig. 4). As expected,
equilibrium temperatures T1 and T2 increase with de-
creasing magnitude of ]Cs/]T (Fig. 4) and increasing
V0. An increase of 1 m s21 in the wind speed corresponds
approximately to a decrease of 18C in the equilibrium
temperatures.

Our sensitivity experiments further show that the up-
per-ocean thermocline movement [which is not consid-
ered in Sun and Liu (1996) and Clement et al. (1996)]
is an important process that influences the ocean heat
transport because it changes subsurface ocean temper-
atures and thus changes vertical temperature gradients.
To illustrate its role, we conducted an additional ex-
periment by setting g 5 0. The result, as shown in Fig.
3 (the light shaded bars), indicates that the ocean heat
transport is reduced by one-third of its original ampli-
tude. This reduction is offset by the increase in the other
two effects.

We further examined the sensitivity of the model to
the mean depth of the ocean mixed layer h and the SST–
thermocline feedback coefficient g (see Fig. 5). It turns
out that the cloud shortwave forcing and evaporative
flux decrease with increased h and g, while ocean trans-
port has an opposite tendency. The physical interpre-
tation of this result is simple. The effect of heat fluxes
on SST is always reduced when the ocean mixed layer
thickens. A stronger ocean heat transport occurs when
the subsurface temperature change associated with the
thermocline displacement is considered.
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FIG. 5. Dependence of cloud shortwave forcing (circle), evapora-
tion (triangle), and ocean heat transport (square) (unit: W m22) on
the ocean mixed layer depth, h (top panel), and SST–thermocline
feedback coefficient, g (bottom panel).

3. Intermediate coupled model experiments

In the previous simple two-box model, we assumed
a constant surface wind speed in the latent and sensible
heat flux calculation and a fixed cloud–SST feedback
coefficient, ]Cs/]T, based on the Ramanathan–Collins
satellite analysis. We now relax these constraints/as-

sumptions by using an intermediate coupled model that
predicts both clouds and surface winds.

a. Model description

Unlike previous intermediate coupled models (e.g.,
Cane and Zebiak 1985; Anderson and McCreary 1985)
that simulate only anomaly fields, we use an interme-
diate model that is capable of simulating both clima-
tological mean and anomaly fields.

The atmospheric component of the coupled model
was developed by Li and Wang (1994). A brief descrip-
tion of the model and model parameters is given in the
appendix. Based on the observational evidence that the
annual variation of the vertically averaged lapse rate
plays an important role in determining sea level pressure
(SLP), this atmospheric model first calculates the ver-
tically averaged lapse rate from SST using an empirical
formula derived from observations [Eq. (A.4)]. The sea
level pressure is then determined from a vertical inte-
gration of the hydrostatic equation and the equation of
state [Eq. (A.3)]. Once the sea level pressure is deter-
mined, the surface winds are computed assuming a lin-
ear momentum balance with an anisotropic, latitude-
dependent Rayleigh friction [Eqs. (A.1) and (A.2)]. De-
spite its simplicity, this atmospheric model is capable
of simulating not only the interannual variation of sur-
face winds but also the climatological annual cycle when
forced with the observed tropical Pacific SST.

The oceanic component is a Cane–Zebiak type model
(Cane 1979; Zebiak and Cane 1987). It features a linear
reduced gravity upper-ocean dynamics with a varying
thermocline that separates the surface warm water and
deep-ocean cold water [Eqs. (A.6) and (A.7)]. Embed-
ded into the reduced gravity upper ocean is a constant
depth, linear Ekman layer, which captures the intensity
of wind-driven surface currents and associated vertical
motion [Eqs. (A.9)–(A.11)]. The subsurface temperature
is parameterized in terms of changes in the thermocline
depth [Eq. (A.12)]. The model was originally developed
to predict changes in anomaly SST and was coupled
with a Gill-type anomaly atmospheric model for ENSO
simulations (Cane and Zebiak 1985; Zebiak and Cane
1987). It has been subsequently modified and used in
climatological annual mean and annual cycle studies
(e.g., Seager et al. 1988; Chang 1994; Li and Philander
1996; Li 1997a).

The atmospheric and oceanic components are coupled
using a nonlinear relation between surface wind stresses
and wind speeds, that is,

t 5 rCD |V|V, (3.1)

where CD is a drag coefficient and V is atmospheric
surface wind.

The shortwave and longwave radiative fluxes at the
ocean surface may be expressed as
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Q 5 Q (1 2 z)[1 2 (a 1 bn)n] (3.2)sw 0

4 2Q 5 0.97sT (0.39 2 0.05Ïe)(1 2 cn )lw a

31 3.88sT (T 2 T ), (3.3)a S a

where Q0 is the annual-mean direct and diffuse maxi-
mum solar flux and is a function of latitude (Budyko
and Miller 1974); n is the cloudiness (in fraction); z 5
0.06 denotes the albedo of the ocean surface; b 5 0.38
is a constant; a and c are coefficients varying with lat-
itude; Ta and Ts are air and sea surface temperatures,
respectively; e is the water vapor pressure at the sea
surface; and s is the Stefan–Boltzmann constant.

The cloudiness in the model is parameterized from
the precipitation rate, which is calculated based on large-
scale moisture convergence and surface evaporation
[Eq. (A.5)]:

n 5 n0 1 mPr, (3.4)

where n0 denotes the mean cloud amount that is not
associated with deep convection and m is a tuned co-
efficient. The value of m is set to be 0.4/15 based on
the observational fact that a climatological monthly
mean rainfall of 450 mm (or 15 mm day21) over the
tropical oceans corresponds approximately to a mean
cloud fraction of 40% (Xie and Arkin 1996; Oberhuber
1988). For simplicity, a constant value of n0 5 0.1 is
used.

The latent and sensible heat fluxes at the ocean sur-
face are calculated according to bulk aerodynamic for-
mulas:

Q 5 r c |V|L(q 2 q ) (3.5)lh a D s a

Q 5 r c |V|c (T 2 T ), (3.6)sh a D p s a

where ra 5 1.2 kg m23, L 5 2.5 3 106 J kg21, and cp

5 1004 J kg21 K21. The saturation specific humidity qs

is a function of Ts and is calculated from the Claussiaus–
Clapyron equation. The surface air specific humidity qa

and the air temperature Ta are calculated from Eqs.
(2.12)–(2.13).

b. Equilibrium solutions

When forced by the annual-mean solar radiation, the
model reaches an equilibrium state after a 5-yr integra-
tion. Figure 6a shows the equilibrium solutions for SST,
surface wind, rainfall, and thermocline depth. The sim-
ulated annual-mean climate reasonably approximates
the observed long-term climatology in the tropical Pa-
cific (Fig. 6b). The east–west asymmetry in the SST
field, characterized by the warm pool (with a maximum
temperature of greater than 308C) in the western Pacific
and the cold tongue (with a minimum temperature of
about 238C) in the eastern Pacific, is modeled reasonably
well. The east–west SST gradient drives the atmospheric
Walker circulation so that winds at the surface are east-
erlies. The easterly trades converge onto the warmest

water in the western Pacific over which convection oc-
curs. The clouds associated with the convection affect
the SST by altering net shortwave and longwave radi-
ation at the surface. In addition, the trades also influence
the SSTs through surface evaporation and ocean dy-
namics (by inducing three-dimensional ocean currents
and thermocline variations). A strong east–west tilt ap-
pears in the mean thermocline depth field at the equator,
with the thermocline more shallow in the eastern Pacific
and deeper in the western Pacific.

In addition to the east–west asymmetry, there is also
a north–south asymmetry. In the eastern Pacific, south-
erly trades cross the equator and converge onto the in-
tertropical convergence zone (ITCZ). Consistent with
this convergence, maximum precipitation appears to the
north of the equator. Since the annual-mean solar ra-
diation is approximately symmetric about the equator,
the north–south asymmetry results from coupled ocean–
atmosphere interactions (Philander et al. 1996; Li
1997a).

The diagnosis of the annual-mean surface heat budget
indicates that the SST is primarily determined by the
shortwave radiation and surface evaporation. Long-
wave flux and ocean dynamic processes, on the other
hand, also play an important role. The net surface short-
wave radiation (see Fig. 7) in the western Pacific is about
200 W m22, which agrees well with Pinker and Laszlo’s
(1992) satellite retrieval. The averaged net ocean heat
transport in the western equatorial Pacific is less than
30 W m22, which is consistent with observations (Ob-
erhuber 1988) and coupled GCM simulations (e.g.,
Schneider et al. 1996). The comparison between the
shortwave radiation over the western Pacific (where
deep convection occurs) and eastern Pacific (cloud free)
reveals that the cloud shortwave forcing is about 72 W
m22 for a mean temperature difference of 48C. This
agrees reasonably with a 75 W m22 solar difference
derived from the Earth Radiation Budget Experiment
(ERBE) data between convective and trade wind re-
gions. The solar radiation difference corresponds to a
heat flux change rate of 18 W m22 K21, which is close
to the 19 W m22 K21 reported by Ramanathan and Col-
lins (1991). Surface evaporation is larger in the eastern
Pacific than in the western Pacific even though the SST
is lower in the eastern Pacific. This is because of greater
wind speeds in the cold tongue region. Among all terms,
sensible heat flux is smallest (about 10 W m22). Al-
though the SST is higher, the net outgoing longwave
flux is smaller in the western Pacific due to the longwave
radiation forcing of clouds and atmospheric water vapor.

c. Sensitivity experiments

The results of section 3b demonstrate that the inter-
mediate coupled model is capable of simulating a re-
alistic annual-mean climate. In this section, we inves-
tigate the specific processes that regulate maximum
SSTs in the warm pool. Our strategy is to introduce an
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FIG. 6. (a) Equilibrium solutions for the annual mean SST, surface
wind, precipitation rate, and ocean thermocline depth from the in-
termediate coupled model; and (b) observed counterparts for the an-
nual mean SST, wind, precipitation, and depth of 208C ocean iso-
therm.

initial SST perturbation in the warm pool region and
examine how the perturbation evolves in the presence
of clouds, evaporation, and ocean dynamical processes.
The following four experiments are designed. To study

the role of cloud reflection (case A), we specify time-
independent longwave, latent, and sensible heat fluxes,
and ocean dynamic terms, which are derived from the
previous annual-mean climate case, while calculating
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FIG. 7. Annual-mean surface heat budget diagnosed from the in-
termediate coupled model for the equatorial western Pacific (averaged
over 58S–58N and 1408E–1808) and eastern Pacific (averaged over
58S–58N and 1408–1008W). The S denotes the surface shortwave
radiation, E surface evaporation, L net longwave radiation, H sensible
heat flux, and O ocean heat transport (units: W m22).

FIG. 9. Time evolution of maximum SST in the warm pool in the
presence of cloud shortwave forcing only (denoted as C), evaporation
only (E), ocean dynamics only (O), and all of the above (C 1 E 1
O).

FIG. 8. Horizontal structure of a specified initial SST (8C) perturbation [see Eq. (3.7)].

the cloud shortwave forcing at each time step. In cases
B and C, we examine the role of surface evaporation
and ocean dynamic processes, respectively. In case D,
all three processes are considered.

Superposed on the equilibrium annual mean SST field
T , an SST perturbation (see Fig. 8) is introduced ini-
tially, which has the following formula:

(T 2 298C) 3 5, T . 298C
T9 5 (3.7)50, T # 298C.

Figure 9 illustrates the time evolution of maximum
SSTs in the four cases. In all cases, the initial SST
perturbation is reduced, and the model reaches an equi-
librium state. The results suggest that the annual-mean
climate is stable to the perturbation in the presence of
each of the mechanisms. The resulting equilibrium tem-
perature is 31.58C for case A, 33.28C for case B, and
34.68C for case C. When all three mechanisms are pre-
sented (case D), the model essentially retains the orig-
inal equilibrium solution.

The above sensitivity experiments indicate that the
cloud–SST feedback is a most important process in reg-
ulating maximum SSTs in the warm pool. The evapo-
ration and ocean dynamics, on the other hand, can also
effectively suppress the ocean warming. Overall, they
are all essential in producing the observed climatolog-
ical SSTs in the western Pacific.

The relative roles of clouds, surface evaporation, and
ocean dynamics can be further revealed by comparing
heat flux change rates with respect to SST changes. A
particular question we address here is how much in-
crease/decrease occurs in the shortwave radiation, sur-
face evaporation, and ocean heat transport for an in-
crease of 18C in SST in the warm pool. (The SST anom-
aly pattern is kept the same for the moment.) The heat
flux change rates are calculated based on a 30-day av-
erage, subtracted from the equilibrium solution in the
control case (i.e., the annual-mean climate case). Figure
10 shows the calculated heat flux change rates. The
resemblance of horizontal structure of the cloud short-
wave forcing to the perturbed SST pattern implies that
precipitation/convection is in phase with SST gradient–
induced surface moisture convergence. The structures
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FIG. 10. Surface heat flux differences (units: W m22) between the perturbed SST cases and
the control case in the presence of the cloud shortwave forcing, surface evaporation, and ocean
dynamic processes. The amplitude of the SST perturbation in all three cases is 18C.

of the evaporative flux and ocean heat transport are
complicated because of spatial phase differences among
the SST, wind, and ocean currents. This is why maxi-
mum latent heat fluxes appear over large SST gradient
regions away from the perturbed SST center. The in-
crease of easterly winds to the east of the SST center

cools the ocean through anomalous upwelling and zonal
temperature advection.

The mean heat flux change rate over the warm pool
region (T $ 298C) due to cloud shortwave forcing is
19.2 W m22 K21, which is in good agreement with Ra-
manathan and Collins (1991). The averaged rates for
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