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ABSTRACT

A decision algorithm is presented that improves the productivity of data collection activities in stochastic

environments. The algorithm was developed in the context of an aircraft field campaign organized to collect

data in situ from boundary layer clouds. Required lead times implied that aircraft deployments had to be

scheduled in advance, based on imperfect forecasts regarding the presence of conditions meeting specified

requirements. Given an overall cap on the number of flights, daily fly/no-fly decisions were taken traditionally

using a discussion-intensive process involving heuristic analysis of weather forecasts by a group of skilled

human investigators. An alternative automated decision process uses self-organizing maps to convert weather

forecasts into quantified probabilities of suitable conditions, together with a dynamic programming procedure

to compute the opportunity costs of using up scarce flights from the limited budget. Applied to conditions

prevailing during the 2009 Routine ARM Aerial Facility (AAF) Clouds with Low Optical Water Depths

(CLOWD) Optical Radiative Observations (RACORO) campaign of the U.S. Department of Energy’s

Atmospheric Radiation Measurement Program, the algorithm shows a 21% increase in data yield and a 66%

improvement in skill over the heuristic decision process used traditionally. The algorithmic approach

promises to free up investigators’ cognitive resources, reduce stress on flight crews, and increase productivity

in a range of data collection applications.

1. Introduction

This paper presents a decision algorithm developed to

improve the efficiency of scientific data collection in sto-

chastic environments. The Atmospheric Radiation Mea-

surement (ARM) Program within the climate science

programs of the U.S. Department of Energy has objectives

involving the routine collection of data in situ from par-

ticular cloud formations by means of specially equipped

aircraft (more information available online at http://www.

atmos.uiuc.edu/;mcfarq/aavp.whitepaperoverview.pdf).

Each day during a field campaign, investigators must

decide whether or not to deploy the aircraft on the fol-

lowing day. Investigators traditionally have made these

fly/no-fly decisions through a process involving heuristic

analysis by experienced human investigators of forecasts

of atmospheric conditions. Since budgeted flight hours

are limited and expensive, and since available forecasts of

suitable conditions are imperfect, investigators view the

deployment decisions as having high stakes. In these de-

cisions, two considerations must be balanced: the uncer-

tain data value of the immediate opportunity and the cost

associated with using up, from the fixed budget, flight

hours that might otherwise be held back for use at a later

date. The forecasts provide some information about the

estimated value of the immediate prospect. Regarding
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the more distant opportunities for which flight time might

be husbanded, only general statistical information is avail-

able. Estimating the second term—the value of not flying—

appears to represent a particular challenge to even the most

experienced investigators. Participants generally view this

decision process as time consuming, tedious, stressful, and

unpleasant.

This paper presents an alternative process for making

these decisions: an automated decision algorithm. In the

present study, the investigators’ fly/no-fly decision prob-

lem is modeled formally, in terms of the investigator’s

objectives, resource constraints, and available informa-

tion. This formal model is then analyzed with the aid of

dynamic programming, a well-established optimization

technique especially suitable for applications involving

sequential decisions taken under uncertainty (Bellman

1957; Kamien and Schwartz 1991). Dynamic program-

ming has been used to address problems in fields as di-

verse as hydrology (how much water to release from a

reservoir; Stedinger et al. 1984), financial analysis (when

to exercise the option to undertake an irreversible in-

vestment; Dixit and Pindyck 1994), meteorology and

public safety (when to order a hurricane evacuation;

Regnier and Harr 2006), and sports (whether or not, in

a game of American football, to punt on a fourth down;

Romer 2006). [For a recent survey of the relatively spare

body of work at the intersection between meteorology

and operations research see Regnier (2008).]

Applied in the present context, dynamic program-

ming is used to derive a decision tool offering bright-line

fly/no-fly recommendations, without making extensive

use of investigators’ time or other expensive resources.

The algorithm’s performance was tested by means of

a retrospective application to a recent ARM field cam-

paign. The analysis indicates that the algorithm, applied

mechanically, would have yielded a greater rate of suc-

cessful data collection per available flight than was achieved

by means of the heuristic techniques actually employed by

the investigators.

The work introduces two innovations in technique.

These include, first, a generalizable method for trans-

lating a deterministic forecast produced by a numerical

weather prediction model into a calibrated estimate of

the probability of encountering specified atmospheric

conditions. This approach to probabilistic forecasting

is based on the tool of self-organizing maps (Kohonen

2001), a nonparametric numerical clustering technique

that has been used in some applications in the atmo-

spheric sciences (Hewitson and Crane 2002; Johnson

et al. 2008). The second innovation involves the use of

dynamic programming for optimizing the deployment of

data collection resources in the context of a field cam-

paign in the atmospheric sciences.

Formal analysis of the sequential fly/no-fly decision

problem, and the application of optimization tools in that

context, are apparently new in the atmospheric sciences.

The analysis does nonetheless have antecedents in other

applications involving the optimal deployment of scarce

data collection resources. Students of forecasting have,

for example, devoted substantial attention to issues of

targeted or adaptive observing strategies (Lorenz and

Emanuel 1998; Majumdar et al. 2001; Langland 2005),

which concern decisions about where and when to deploy

data collection resources in order to improve, through data

assimilation, the accuracy of forecasting models. Because

it involves a probabilistic analysis of the information value

of a data collection program, adaptive observing forms

a niche within the field of preposterior analysis (Berger

1993), itself a category within the larger domain of ex-

perimental design.

The most fundamental difference between the adaptive

observing literature and the present work concerns the

goals being pursued. The goal of adaptive observing is to

produce better forecasts; observations are collected solely

as a means to that end. In the present work, this relationship

between means and ends is reversed. Data collection is

itself the goal, while forecast quality is important only in-

sofar as it enhances the scientists’ ability to collect more

data. A second, closely related distinction separating the

present work from that on adaptive observing concerns the

absence of a feedback loop between forecasts and obser-

vations. In adaptive observing, a savvy deployment of data

collection resources will lead to a more accurate forecast,

which may in turn influence the choice of deployment

strategies in future periods. In the present work, there is no

such feedback loop. The sampling program being optimized

does not influence the forecasting system: deployment de-

cisions have no effect on the forecast information that will

be available later. A decision to deploy affects the future

progress of the field campaign only as it depletes the stock

of available data collection resources.

2. A formal model of the Cloud Hunter’s Problem

Developing an automated decision algorithm begins

by crafting a formal model of the decision challenge that

the investigators confront. We dub this challenge ‘‘the

Cloud Hunter’s Problem.’’

The Cloud Hunter’s basic problem is to decide how to

allocate a limited budget of flight time over the course of a

field season. Let D denote the length of the field season in

days, and let F # D denote the number of flights in the

Cloud Hunter’s budget. Let d 5 D, . . . , 1 index dates,

where by convention d will denote the number of days

remaining in the field season. Let xd be a binary random

variable that takes the value 1 if on date d atmospheric

conditions are suitable for data collection (d is a ‘‘good’’
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day), and 0 otherwise. Let ad be a binary control variable

that takes the value 1 if a flight is made on date d, and

0 otherwise. Let x 5 hxD, xD21, . . . , x1i denote the vector

of conditions during the field season, and let a 5 haD,

aD21, . . . , a1i denote the vector of all decisions taken.

Then a � x 5 �adxd is the realized number of successful

data collection days.

The investigators’ challenge can be posed as a prob-

lem of constrained optimization under uncertainty: for

each day d 5 D, . . . , 1, make a flight decision ad 2 f0, 1g
with the goal to maximize in expectation the total number

of successful data collection days. This problem can be

stated formally:

max
a

E[a � x] (1)

subject to the budget constraint �ad # F.

The Cloud Hunter does not schedule all flights at the

beginning of the field season. Rather, each flight decision ad

is made on the basis of information available on the pre-

vious day, date d 1 1. On day d 1 1, the Cloud Hunter

receives a signal sd that corresponds to a forecast of atmo-

spheric conditions that are expected to prevail on the fol-

lowing day. Each forecast is drawn from a set S of possible

forecast signals. Based on previous experience, the Cloud

Hunter has developed a decoding function p(�) that con-

verts a given forecast signal s into an estimated probability

p(s) that the next day will offer auspicious conditions for

data collection: p(s) 5 Probfxd 5 1jsd 5 sg.
The Cloud Hunter naturally does not know what the

forecast signal sd will be, prior to receiving it. However, the

Cloud Hunter does know the climatology of the forecasting

process (i.e., the likelihood of receiving any given forecast

signal). Let pd(s) denote the unconditional, ex ante proba-

bility that the forecast for date d will take the value s. The

function pd(�) defines a probability distribution over the set

S of possible forecast signals. We call this function pd(�) the

climatology of forecast signals for date d. The daily fore-

casting process can thus be thought of abstractly as a discrete

stochastic process on the set S that generates a sequence

of signals sD, sD21, . . . , s1, according to a known sequence

of probability distributions pD(�), pD21(�), . . . , p1(�). In this

first-pass treatment we assume that the forecast signals are

drawn independently, setting aside the realistic but compli-

cating possibility that the forecasting process may exhibit

autocorrelation.1

The Cloud Hunter’s Problem involves choosing, based

on the forecast conditions, whether or not to prepare to

fly on the subsequent day. Formally, the goal is to find an

optimizing decision rule a(d, f jsd) that takes a value ad 5

1 (fly) or ad 5 0 (no fly) as a function of the number d of

days left in the field season, the number f of flights re-

maining in the budget, and the forecast sd of the next

day’s atmospheric conditions. A decision rule a(�) is

deemed optimal if its consistent application maximizes in

expectation the yield of successful flights realized from

the given budget.2

3. Optimization via dynamic programming

The search for an optimal decision rule employs

dynamic programming, a technique suitable in appli-

cations involving sequential decisions under uncer-

tainty. The central concept of dynamic programming is

captured in the principle of optimality articulated by

Bellman (1957): ‘‘an optimal policy has the property

that whatever the initial state and initial decision are,

the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first

decision.’’ This principle suggests a solution strategy

that involves breaking up a problem into two pieces:

the immediate next decision and all the decisions that

come thereafter.

Suppose, then, that an optimal decision rule, de-

noted a(d, f js), has been found. Let V(d, f ) denote the

expected number of successes that would be realized

from repeated application of this rule, starting from

initial conditions hd, f i. By definition, V(�) equals the

maximand of the decision problem (1), beginning

from these initial conditions, under the substitution

a 5 a(d, f jsd):

V(d, f ) 5 E

�
�

i5d,...,1
a(i, f jsi) 3 xi

�
, (2)

where the expectation is taken over the probability

distribution of all possible sequences of forecast signals

1 It is not necessarily assumed that the forecast signals are

identically distributed, however. Nor would it be difficult to in-

corporate the possibility of autocorrelation in the sequence of

forecast signals. One would simply replace, at appropriate points,

the unconditioned probability distribution function p
d
(�) with the

corresponding function conditioned on realizations at earlier dates.

2 There could, in practice, be cases in which investigators might

rationally pursue objectives other than maximization of expected

value. For example, an investigator may wish instead to maximize

the probability of collecting at least a specified minimum quantity

of useable data—say, an amount determined in advance to be

necessary to achieve a desired degree of statistical significance.

Such a situation could be modeled by substituting an alternative

objective function. Expected value maximization is, however, both

analytically tractable and quite realistic for many if not most sci-

entific problems.
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sd, sd21, . . . , s1.3 Bellman’s principle of optimality sug-

gests that V(�) be expressed as the sum of two terms: the

expected payoff associated with the next day’s flight

decision, plus the expected number of successful flights

realized during the remaining balance of the season,

assuming that all decisions are made optimally. For-

mally, Bellman’s principle of optimality implies that the

value function V(�) must satisfy a particular recursive

relationship:

V(d, f ) 5 Efs
d
g[a*d xd 1 V(d 2 1, f 2 a*d)], (3)

where a*d 5 a(d, f js
d
) is the optimized choice for the

date-d fly/no-fly decision. Here the expectation is taken

with respect to the probability distribution pd(�) over sd,

the next forecast signal to be received. The second term

in brackets is called the continuation value of V, the

expected number of successful flights made during the

balance of the season (beginning date d 2 1), condi-

tioned on the choice a*d, and assuming that all subsequent

flight decisions are also made optimally.

Once the forecast sd is received, the Cloud Hunter

must decide whether or not to fly. If the decision is made

to fly on date d (if ad 5 1), the expected payoff for that

day is E[xdjsd] 5 p(sd). Since one flight has been used

from the limited budget, the continuation value for the

rest of the season is V(d 2 1, f 2 1). If instead the de-

cision is made to not fly (ad 5 0), then the payoff for date

d is zero, and the flight is saved for possible future use. In

this case, the continuation value is V(d 2 1, f ). Since the

choice for a*d must be one that maximizes value in ex-

pectation, we must have

V(d, f jsd) 5 maxfp(sd) 1V(d 2 1, f 2 1), V(d 2 1, f )g.
(4)

Equation (4) implies a form for an optimal decision rule:

a*d 5 1 (‘‘fly’’) if and only if

p(sd) $ V(d 2 1, f ) 2 V(d 2 1, f 2 1); (5)

otherwise, a*d 5 0 (‘‘no-fly’’). The inequality (5) can be

understood as a cost–benefit comparison: p(sd) is the

expected benefit of flying, while DV 5 V(d 2 1, f ) 2

V(d 2 1, f 21) is the expected cost, in units of foregone

future successes, associated with beginning the following

day (date d 2 1) with one fewer flight remaining in the

budget.4 The term DV is called the hurdle probability for

the state hd, f i.
This decision rule—‘‘fly if and only if the estimated

probability of good conditions exceeds the hurdle

probability’’—defines an optimal policy in terms of the

continuation values V(d 2 1, f ) and V(d 2 1, f 2 1). If

those continuation values were known, then (4) would

allow for the computation of V(d, f ) 5 Efsdg[V(d, f jsd)].

Since the choice of initial conditions d and f were arbi-

trary, (4) offers an inductive procedure for computing the

value of the function V for any date and flight budget in

terms of the values it could take on subsequent dates. The

process is illustrated with the aid of Fig. 1.

FIG. 1. A graphical representation of the decision algorithm.

When there are 2 days remaining in the field season, and only 1

flight remaining in the project budget, the investigator chooses

either to fly, or not. If the decision to fly is taken, the investigator

has success with probability P, which is estimated based on a fore-

cast of the next day’s atmospheric conditions, and then drops to

state d 5 1, f 5 0. Alternatively, the investigator can hold the re-

maining flight in reserve until the last day, when the project will be

in state d 5 1, f 5 1. The remaining flight is then used with certainty,

yielding success with a probability equal to the long-run climato-

logical average frequency of encountering good conditions (here,

28%). State h2, 1i is more valuable than state h1, 1i exactly because

the extra day gives the investigator the option to fly only in case the

forecast probability exceeds the average climatological probability.

Given knowledge of the long-run distribution of forecasts, the

likelihood that the option will be exercised can be computed in

advance, prior to the start of the field season.

3 The correlation between forecast signals si and realized con-

ditions xi is suppressed in the interest of avoiding notational clutter.

Of course, there must be some correlation: a ‘‘forecasting’’ system

that provided no information about subsequent atmospheric con-

ditions would be useless.

4 In case the relation (5) holds with equality, the decision maker

is indifferent between flying or not. We arbitrarily set the decision

rule so that p 5 DV generates a decision to fly.
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Two boundary conditions constrain the values V may

take. First, we know that V(d, 0) 5 0 for all d: if there are

no more flights left in the budget, then there will be no

more successful flights. A second boundary condition

follows from the maintained assumption that unused

flights left in the budget at the end of the season have no

residual value. This assumption implies that it is always

optimal to fly whenever the number of remaining flights

equals the number of remaining days (i.e., whenever f 5 d)

no matter what forecast signal is received. The expected

payoff V(d, d) counting from that date forward is just

the long-run average (i.e., climatological) probability of

good conditions on the days remaining in the season: for

all d, V(d, d) 5 E[ p(sd) 1 p(sd21) 1 � � � 1 p(s1)].

Together with these boundary conditions, the re-

cursive relationship (4) allows V(d, f ) to be computed

for arbitrary conditions d and f by taking expectations

over the climatology of forecast signals:

V(d, f ) 5 E
p(s

d
)
[V(d, f jsd)]. (6)

The inequality condition (5) then allows the decision

rule a(d, f jsd) to be implemented for arbitrary condi-

tions hd, f i.
It bears emphasizing that V is an unconditioned ex-

pectation; its values do not depend on forecast real-

izations. The value the function takes at each node in the

hd, f i lattice can, therefore, be computed in advance,

before the start of a field season. (The details are pro-

vided later. Figure 5 displays this idea graphically.) One

can likewise compute in advance the hurdle probability

DV for each node. Finally, given the optimal decision

rule a(d, f jsd) and information about the climatology of

forecast signals, one may readily compute the ex ante

probability that a campaign in state hd, f i will reach

a decision to fly:

Prob[a(d, f ) 5 1] 5 Efs
d
g[a(d, f jsd)]

5 �
s

d
2S

p(sd) 3 a(d, f jsd): (7)

Repeated application of (7) allows the calculation of

derivative terms such as the probability of following

any particular path through the hd, f i lattice, or the

probability that a crew will be required to fly on a

specified date. By providing guidance about the like-

lihood of flying under varying conditions during the

season, (7) could evidently be useful to project scien-

tists and crew as they plan their activities during the

field campaign.

4. Quantifying success probabilities using
self-organizing maps

The Cloud Hunter’s Algorithm was applied retro-

spectively to the flight scheduling challenges associated

with the Routine ARM Aerial Facility (AAF) Clouds

with Low Optical Water Depths (CLOWD) Optical

Radiative Observations (RACORO) campaign, a recent

data collection effort within the ARM program (more

information is available online at http://acrf-campaign.

arm.gov/racoro). For the RACORO investigators, desir-

able conditions featured the presence of liquid boundary

layer clouds above the Southern Great Plains (SGP)

ARM Climate Research Facility (ACRF) located near

Lamont, Oklahoma.

To operationalize the algorithm requires a technique

for estimating, based on a day-ahead forecast, the like-

lihood that a flight made on the following day will en-

counter boundary layer clouds over the SGP site. More

exactly, it requires that there be a specified set S of

possible forecast signals; a mapping p(s) 5 Probfxd 5

1jsd 5 sg that converts forecast signals into quantified

probabilities of encountering good conditions; and, for

each date d during a field season, climatological proba-

bilities pd(s) of receiving each type of forecast signal.

One might consider implementing the decision algo-

rithm for this application by using the output from

a standard numerical weather prediction model to cre-

ate a day-ahead forecast of the likelihood that suitable

cloud formations will be observed above the SGP site.

However, rather than relying on model physics directly

to predict the presence or absence of boundary layer

clouds, the implementation strategy adopted relied on

the known relationship between vertical profiles of rel-

ative humidity (RH) and observed boundary layer

cloudiness (Berg and Kassianov 2008). The RH profile

forecasts are generated routinely by standard numerical

weather prediction models such as the Global Forecast

System (GFS) model maintained by the National Cen-

ters for Environmental Prediction (Kanamitsu et al.

1991). Taking advantage of this correspondence, the

day-ahead RH profile forecast produced by the GFS

model was used as the basis for estimating the proba-

bility that the next day’s sky will feature boundary layer

clouds above the SGP site.

This strategy presents at least two difficulties. One

difficulty concerns the uncertainty and complexity that

characterizes the relationship between RH profiles and

the presence or absence of boundary layer clouds. Ide-

ally, one would like to create a predictive model of these

relationships, calibrated on the basis of historically ob-

served correlations between the two phenomena. The

space of all RH profiles is, however, high dimensional,
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and the relationship between RH profiles and boundary

layer clouds is neither simple nor linear. A given his-

torical RH profile observation may not be directly

comparable to a sufficiently large number of others to

provide robust guidance about the degree of association

between that RH profile type and the observed frequency

of boundary layer clouds. This complexity makes it

problematic to use standard statistical techniques (e.g.,

linear regression) to calibrate the mapping from an

arbitrary RH profile to an estimated probability of

boundary layer clouds.

a. Dimension reduction using self-organizing maps

The dimensionality issue was addressed by deploying

the dimension-reduction tool of self-organizing maps

(SOMs), a nonparametric clustering technique based on

neural networks (Kohonen 2001; Johnson et al. 2008).

To create a SOM, the analyst specifies a metric that

defines the ‘‘distance’’ between any two elements in the

dataset, as well as the number of clusters into which el-

ements will be organized. Applied to the historical RH

profile data, the SOM method groups similar RH pro-

files together into clusters, representing each cluster by

a single canonical member. The SOM method presents

the canonical members in a structured two-dimensional

grid such that clusters with similar members are located

close together while clusters with dissimilar members

are more widely separated.

Using this approach, a 24-member5 SOM was created

from relative humidity data derived from the North

American Regional Reanalysis (NARR; Mesinger

et al. 2006) for the period 1979–2008 for the 1000–

600-mb layer above the model grid point nearest to the

SGP site. The NARR was used because it provides a

30-yr time series, analyzed in a consistent way through-

out this period. In the absence of high-frequency, de-

tailed observations of the entire air column above the

SGP site, the NARR provides the best available esti-

mate of prevailing atmospheric conditions. The distance

metric employed to create the SOM was the standard

Euclidean (L2) norm: the distance between two RH pro-

files was defined to be the square root of the sum of the

squares of the difference in relative humidity at each

pressure level (more information is available online at

http://www.esrl.noaa.gov/psd/data/gridded/data.narr.

html).6 The model grid point used is located at 36.578N,

97.568W, less than 7 km from the SGP facility located

at 36.698N, 97.568W. The SOM was generated using

NARR RH profiles for 1800 UTC on each day. This last

choice reflects the fact that the strong majority of

RACORO flights were flown during the window 1300–

2300 UTC.

To each SOM cluster one can associate a probabil-

ity of boundary layer clouds being present. A simpli-

fying assumption is imposed that all members of a

given SOM cluster are sufficiently similar that they

share a common probability of producing boundary

layer clouds. If the number of elements in the cluster is

not small, then the empirically observed frequency of

boundary layer clouds for the members of this clus-

ter provides a good estimate of this common, true un-

derlying probability. In present study, each SOM cluster

contains over 100 members for which the presence or

absence of boundary layer clouds can be verified. The

estimated probability ~p(~s) that an arbitrary member of

cluster ~s will be associated with the presence of boundary

clouds is thus given by the empirical frequency:

~p(~s) 5 n~s/N~s, (8)

where n~s is the number of relative humidity profiles as-

signed to SOM cluster ~s for days on which boundary

layer clouds are present, and where N~s is the total

number of profiles assigned to SOM cluster ~s over the

period of record for which boundary layer cloud data are

available.

The presence of boundary layer clouds at the SGP on

a given date was verified based on cloud fraction data

obtained from ARM’s Climate Modeling Best Estimate

product (CMBE; Xie et al. 2010). The CMBE algorithm

calculates mean hourly cloud fractions for the SGP site at

45-m vertical resolution. These hourly cloud fractions are

derived from ARM’s Active Remotely-Sensed Clouds

Locations (ARSCL) value-added product (Clothiaux

et al. 2001, 2000). The ARSCL-derived cloud fractions

are assumed to reflect accurately the true state of clouds

in the atmosphere. Using the CMBE data, each 1-h in-

terval in the period of record (1998–2008) was coded for5 In choosing an SOM grid size an analyst must balance two

concerns. Reducing the grid size will tend to increase mean

quantization error, the average dissimilarity between elements

grouped together in a cluster (Kohonen 2001). Increasing the grid

size reduces the number of elements in each cluster and, therefore,

the statistical significance of estimates of cluster-specific charac-

teristics. A sensitivity analysis showed that results of the study

were essentially unchanged for grid sizes ranging from 9 to 64 (see

Stefik 2010).

6 The pressure levels used in the distance calculation were the

same as those used by the NARR model. The NARR uses

a vertical resolution 25 mb from 1000–700 mb and 50 mb from

700–600 mb. Hence, the distance calculation was based on dif-

ferences in RH at the 1000-, 975-, 950- . . . 725-, 700-, 650-, and

600-mb levels.
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the presence or absence of boundary layer clouds. Bound-

ary layer clouds were deemed present if and only if all of

the following conditions held over the SGP site during

the entirety of the hour: (i) the cloud fraction exceeded

10%; (ii) the cloud top was below 3 km; (iii) the cloud

base was above 400 m; (iv) no precipitation (less than

1/100th in.) was detected. [The 3-km threshold was used

in accordance with the specifications contained in the

RACORO proposal (Vogelmann 2008), notwithstanding

variability in actual boundary layer depths.] A day was

classified as having conditions suitable for data collec-

tion if and only if boundary layer clouds were present for

at least 4 h during the window 1300–2300 UTC, when

most RACORO flights were taken. A sensitivity analysis

showed similar results as this threshold was varied be-

tween 3 and 6 h (see Stefik 2010).

Using these verification data, (8) was used to estimate,

for each SOM state, an associated probability of the

presence of boundary layer clouds. Figure 2 shows the

resulting SOM for RH profiles at the Lamont SPG site,

together with graphs of the representative SOM mem-

bers and the empirical frequency of boundary layer

clouds for the elements of each cluster.

The SOM and (8) together provide an empirically cali-

brated basis for estimating the likelihood that a given

RH profile will be associated with the presence of bound-

ary layer clouds. A specified RH profile can be assigned

to 1 of the 24 SOM clusters by matching it with the

canonical member to which it is most similar. Equation

(8) can then be used to estimate the likelihood that

boundary clouds would be present at the SGP site on

that same day.

b. Probabilistic forecasting of SOM states

If existing numerical prediction models could offer

perfect day-ahead RH profile forecasts, then this two-

step technique would provide a sound basis for esti-

mating the probabilities of boundary layer clouds. In

practice, existing numerical weather prediction models

cannot offer such precision. Figure 3 presents one ar-

ticulation of the accuracy of 30-h-ahead RH profile

forecasts produced by the GFS model. The figure dis-

plays the empirical probability distribution for SOM

assignments of realized RH profiles, on days for which

the GFS model forecast an RH profile that would be

assigned to SOM cluster 1. If the GFS model were per-

fectly accurate, then a day-ahead forecast calling for

conditions ‘‘SOM cluster 1’’ would be followed the next

day by a realized RH profile falling into cluster 1, 100%

of the time. In fact, on days for which the GFS model

FIG. 2. The SOM grid for relative humidity profiles at the Lamont site, based on daily data derived from NARR

(Mesinger et al. 2006) for the period 1979–2008. Each cluster is represented by a canonical member, shown. Per-

centages reflect the historically observed frequency of boundary layer clouds among members assigned to each

respective cluster. Among dates for which relative humidity profiles were mapped to cluster 1 (highlighted),

boundary layer clouds were observed 56% of the time.
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forecasts an RH profile assigned to SOM cluster 1, the

actual RH profile realized the next day falls into cluster 1

only 13.3% of the time—even less than the observed

conditional likelihood of falling into cluster 2.7

In light of such forecasting errors, the procedure

employed to estimate the probability of boundary clouds

does not call for accepting the GFS forecast at face

value. Instead, the historical performance of the GFS

model is used to calibrate a conditional probability

distribution over the set of possible SOM states that

might be realized the next day. In notation, let s denote

the number of the SOM cluster to which a given GFS

RH forecast is mapped. For each ~s 5 1, . . . , 24, let p(~sjs)

denote the conditional probability that the forecast of

state s will be followed by a realized state ~s. These

conditional probabilities are derived from the empirical

joint probability distribution of forecast–observation

pairs (Murphy 1997). In terms of this notation, Fig. 3

displays the conditional probabilities p(~sjs 5 1) for each

of the 24 SOM clusters.

To summarize, the technique used to generate a day-

ahead estimate of the probability of boundary layer

clouds at the SGP site involves four steps. First, the GFS

model is used to generate a 30-h-ahead forecast of the

vertical relative humidity profile above the model grid

point nearest to the SGP site. Second, this forecast RH

profile is assigned to 1 of 24 SOM states by matching it

with the canonical SOM member it most closely re-

sembles. Based on the historic track record of the GFS

model, this point-estimate forecast is then converted

into a conditional probability distribution over the set of

all SOM states. Finally, the probability of boundary

layer clouds is computed as the weighted average of

the empirical probabilities observed historically for

each SOM state, with weights given by the conditional

probabilities determined by the GFS calibration. For-

mally, if a 30-h-ahead RH forecast produced by the

1200 UTC GFS model run is assigned to SOM Cluster s,

then the probability of boundary clouds the next day is

estimated by

p(s) 5 Probfx 5 1jsg5 �
24

~s51
p(~sjs) 3 ~p(~s). (9)

In this application, therefore, the set S of forecast signals

is just the set of SOM states, while the mapping p(�) is

given by (9). Figure 4 displays the estimated probabili-

ties of observing boundary layer clouds for each of the

24 possible forecast signals.

To compute the values for the function V(d, f ) for

arbitrary conditions hd, fi also requires a specification of

the climatological probability distributions governing

the generation of forecast signals. For this estimation we

used the historical archive of GFS forecasts for the pe-

riod 2001–08 (see online at http://www.archive.arm.gov,

product ‘‘sgpncepgfspprofX1.c1’’). Each day’s 30-h-

ahead forecast at 1200 UTC for the RH profile at Lamont

was assigned to 1 of the 24 clusters in the previously de-

rived SOM per the mapping procedure described above.

The resulting frequency distribution over SOM states

was taken as the climatological distribution of forecast

signals. Likewise, the empirical joint probability distri-

bution of SOM state forecasts (based on the GFS model

output) and SOM state observations (based on the NARR)

was used to estimate the conditional probability weights

p(~sjs). For this estimation procedure, historical data from

all calendar dates were pooled; possible seasonal varia-

tions were not taken into account. The resulting estimated

climatological distributions were thus treated as being the

same for all dates: the forecast signals were treated as re-

alizations of independent, identically distributed random

variables.

FIG. 3. Conditional probability distribution of SOM state re-

alizations following a forecast of SOM state 1. Each cell displays

the conditional empirical likelihood of observing a relative hu-

midity profile in the associated SOM cluster, on days for which the

GFS model predicted a relative humidity profile falling into SOM

Cluster 1. The GFS model accuracy is imperfect: on days for which

the GFS model forecasts an RH profile assigned to SOM Cluster 1,

the actual RH profile realized the next day falls into Cluster 1 (the

upper-left cell) only 13.3% of the time—even less than the ob-

served conditional likelihood of falling into Cluster 2.

7 Fig. 3 shows that the GFS model has a difficult time predicting

SOM clusters of RH profiles. This difficulty may arise in part as an

artifact of the differences between the GFS and NARR models

with respect to numerical techniques, grid size, and physical pa-

rameterizations. In the SOM mapping step, the GFS model is in

effect used to predict, not the (unobserved) state of the atmosphere

itself, but rather the NARRs representation of the atmosphere.

Technical differences in model design and output format can be

expected to cause at least some difference in the mapping to SOM

clusters. (We are grateful to an anonymous reviewer for pointing

out this issue.)
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5. Comparing decision procedures: Application to
the 2009 RACORO field campaign

The RACORO campaign spanned a five-month field

season, 22 January–30 June 2009. The objective was to

collect measurements from boundary layer clouds over

the SGP site by means of a specially equipped aircraft.

Each flight required extensive preparations: equipment

had to be tested, advance notice given to professional

flight crews, and a flight plan filed with the U.S. Federal

Aviation Administration. Because of the time required

to carry out these preparations, a decision to launch had

to be made on the day before the actual launch. Each

day, therefore, investigators had to decide whether to

prepare the aircraft and crew for a flight on the following

day. Given its budget of 300 flight hours and a usage rate

of approximately 4.5 h per flight, the RACORO team

could expect to fly on approximately 67 days, or 42%

of the time. Because of uncertainties concerning future

atmospheric conditions, aircraft routinely were pre-

pared, or even sent aloft, only to find no boundary layer

clouds over the SGP site. Such type I errors represented

an expensive waste of scarce resources, including the

time of investigators and flight crew, and of limited

supplies of flight hours within the project budget.

Conversely, a type II error—a decision to stand down,

only to find that boundary layer clouds were present

after all—represented an irretrievable loss of a data

collection opportunity.

a. RACORO’s heuristic procedure for making
fly/no-fly decisions

Given the stakes, daily fly/no-fly decisions were a

major focus of discussions within the RACORO team.

Fly/no-fly decisions were made by means of a labor-

intensive process involving heuristic analyses by human

investigators of day-ahead weather forecasts for the

SGP site as well as other information such as satellite

photos. These deliberations consumed on the order of

tens of investigator hours per day during the field season

(A. M. Vogelmann 2009, personal communication). The

decision process was thus itself extremely expensive in

terms of its required inputs of human capital and wear

and tear. The process also imposed unquantifiable but

very real costs in terms of extensive and repeated stress

on investigators, flight crews, and other research staff,

for whom the uncertainties surrounding flight decisions

caused difficulties in planning other activities. More-

over, the heuristic decision process did not take maxi-

mum advantage of available resources: the 2009 RACORO

season ended with 40 flight hours unused. (Aircraft hours

are purchased in advance. There is no cost benefit in con-

serving flight hours.)

FIG. 4. Estimated probabilities of boundary layer clouds as a function of GFS SOM forecast. Probability estimates

based on the GFS forecast are less sharp than those based on RH profile realizations (displayed in Fig. 2). They

nonetheless provide a useful basis for discriminating between more vs less promising data collection opportunities, on

a day-ahead basis.
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b. Formulation of the counterfactual scenario

The acid test of the algorithm’s utility concerns its

ability to improve the yield of usable data collected, while

holding constant or reducing the cost of the decision-

making process. To test its effectiveness, the algorithm

was run using conditions that prevailed during the 2009

RACORO field season. A comparison was then made

between the actual results achieved by the RACORO

team during the 2009 field season, versus the results the

team would have obtained through consistent application

of the automated decision procedure. In order that the

comparison be genuine and fair, the automated decision

procedure was calibrated using only pre-2009 data, in-

cluding the CMBE cloud data, NARR relative humidity

profiles, and GFS relative humidity profile forecasts.

1) AUXILIARY ASSUMPTIONS

Applying the automated decision procedure to

RACORO further required the imposition of certain

auxiliary assumptions and adaptations.

(i) The 5-day rule on flight crews

Regulations promulgated by the U.S. Federal Avia-

tion Administration constrain the frequency with which

crews can operate: crew members are not allowed to fly

on more than 5 days in any 7-day period. Because only

one crew was available, these rules imposed real con-

straints on the operations of the RACORO campaign.

For example, if the crew had flown on each of four

previous days, a decision to fly on a fifth consecutive day

implied not only an expenditure of scarce flight time, but

also the loss of the option to fly on either of the two

subsequent days. These regulatory constraints were in-

corporated into the decision procedure by refining the

optimization model. In the dynamic programming pro-

cedure, the value function V(d, f ) defined by (2) was aug-

mented to condition on the flight history over the previous

7 days: V 5 V(d, fjad11, ad12, . . . , ad17). The decision rule

codified in the inequality (5) was rephrased to take the

form: a*d 5 1 (fly) if and only if �6

k51a
d1k

, 5 and

p(sd) $ V(d 2 1, f j0, ad11, . . . , ad16)

2 V(d 2 1, f 2 1j1, ad11, . . . , ad16); (10)

otherwise, a*d 5 0 (no-fly). The test (10) was applied

daily based on the 30-h-ahead forecast generated by the

1200 UTC GFS model run. Figure 5 displays the values

for the function V(d, f ) computed for the RACORO

campaign.

(ii) Option to cancel a flight

RACORO managers had the option to cancel a sched-

uled flight at any time up to 3 h prior to a scheduled takeoff.

This option would be exercised if the final weather fore-

cast prior to launch showed a deterioration in cloud

conditions that had previously been viewed as promising.

A decision to cancel a scheduled flight does not, however,

eliminate the burden on the flight and scientific crews

associated with preparations for the scheduled launch. A

version of the cancellation option was incorporated into

the automated decision procedure. On days for which

the 30-h-ahead 1200 UTC GFS forecast generated a

decision to fly (ad 5 1), the test (10) was applied again

based on the 6-h-ahead 1200 UTC GFS model run

made the following day. This second test used a sepa-

rate forecast calibration function based on the history

of the 6-h-ahead GFS forecast. When running this second

test, however, the burden on the flight crew was treated

as a sunk cost for purposes of the 5-day rule. Formally,

in the first term on the right-hand side of the inequality

(10), the first conditioning term ad 5 0 is changed to

ad 5 1. This change has the effect of reducing the hur-

dle probability required to justify a decision to fly. This

secondary check led to flight cancellations on 7 days over

the course of the 160-day field season.

(iii) Freezing temperatures

The forecasting system described in section 4 computes

a probability that a given flight will encounter boundary

layer clouds. The specifications of the RACORO mission

stipulate an additional requirement, however, that the

cloud be composed entirely of liquid water. Clouds with

FIG. 5. Computed values for the function V(d, f ) for the

RACORO campaign. Expected number of successful flights gen-

erated by the decision algorithm, as a function of the number of

days remaining in the field season (d, horizontal axis) and the

number of flights remaining in budget ( f, vertical axis), represented

by levels of shading. The black line represents the sequence of flight

decisions the automated method would have issued had it been

implemented under the conditions prevailing during RACORO

field season. Diagonal movements correspond to dates on which

flights would have been made; horizontal movements correspond

to dates on which no flights would have been made.
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ice present occurred with enough frequency, particularly

during the beginning of the field season, that this require-

ment could not be ignored. The need to avoid freezing

temperatures was addressed by checking the GFS model

forecast of temperatures in the air column above the SGP

site. Because our cloud forecasting system does not provide

exact information on the height of clouds (only that, on

‘‘good’’ days, the cloud top will be located below 3 km), the

minimum temperature within a cloud was proxied by the

GFS forecast of temperature at a height of 2.5 km. Al-

though temperature forecasts were not integrated into the

optimization based on dynamic programming, they were

incorporated into the decision algorithm using a simple

binary approach: if the 30-h GFS forecast predicted sub-

zero temperatures at 2.5 km, then no flight was scheduled.

If a flight was scheduled and the 6-h GFS forecast predicted

a 2.5-km temperature below freezing, then the flight was

cancelled.

2) RULES FOR SCORING FLIGHTS AS SUCCESSES

OR FAILURES

The Cloud Hunter’s Algorithm, as augmented per the

above refinements and applied to data from the 2009

RACORO field season, generates a listing of 66 dates

for which a decision would have been made to launch

a flight. Records of the RACORO campaign likewise

indicate 56 dates on which flights were in fact made and,

for those dates, whether the investigators judged the

flight a success or a failure. To perform a side-by-side

performance comparison between the heuristic and au-

tomated decision procedures, a comparable counterfac-

tual log needed to be developed of the results the

investigators would have realized had they employed the

Cloud Hunter’s Algorithm instead. To create this coun-

terfactual track record, some reasonable procedure had

to be devised for scoring flights as successes or failures.

For those dates when both the heuristic and automated

procedures both generated decisions to fly, a natural

rule presents itself: each date was coded a success or

failure following the scoring applied to that flight by the

RACORO team. There were 31 such dates, of which 22

were scored as successes, 9 as failures. The RACORO re-

cords do not, however, include information about the suit-

ability of conditions on dates when the RACORO team did

not fly. To compute results for the automated procedure for

the remaining 35 such dates required some other means for

classifying flights as successes or failures.

To do so, we employed the same definitions and pro-

cedures used to calibrate the cloud forecasting system as

articulated in section 2, applied now to 2009 data. Again

using the CMBE cloud dataset (although this time from

January to June 2009), each hour during the RACORO

field season was coded for the presence of absence of

boundary layer clouds. Each hour was likewise coded for

presence or absence of freezing temperatures, as defined

by the 2.5-km temperature as recorded in the NARR. An

hour was classified as good if boundary layer clouds were

present and if the 2.5-km temperature remained above

08C. A day was classified as good, and a flight on that day

scored as successful, if good conditions existed for at least

4 h during the window 1300–2300 UTC.8

c. Results

Results are summarized in Fig. 6. Of the 160 days in

the field season, 45 (28%) featured good conditions suit-

able for data collection, as defined by the above scoring

rules.9 Using the heuristic decision procedure to make

fly/no-fly decisions, the RACORO team collected data

successfully on 28 of those days, thus harvesting data

on 62% of the suitable data collection opportunities.

Applying the automated decision rule to the same set

of conditions would have yielded useful data on 34 days,

constituting 76% of the potential data collection oppor-

tunities. In other words, the automated decision pro-

cedure showed a 21% improvement in yield over that of

the heuristic procedure.

The difference in results is even more pronounced

when considered in terms of decision skill. If fly/no-fly

decisions had been made entirely at random, then one

would expect flights to be successful at a rate of ap-

proximately 28%, the unconditioned frequency of good

days among all days. The expenditure of 67 flights would

then be expected to yield approximately 19 days worth

FIG. 6. Results: the algorithm’s simulated performance during

2009 field season, compared with realized performance of RACORO

campaign. The algorithm achieves a 21% increase in the number of

successful flights.

8 Additional details on the scoring rules used in the RACORO

application is presented by Stefik (2010), who also elaborates on the

auxiliary assumptions incorporated into the counterfactual analysis.
9 This classification was confirmed by RACORO project scien-

tists (A.M. Vogelmann, 2009, personal communication).
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of useable data, or 42% of the attainable maximum. By

collecting data on 28 days, the heuristic decision process

showed a (28 2 19)/19, or approximately 47%, improve-

ment in harvest rate as compared with this zero-skill

baseline. The automated decision procedure offered a

79% improvement in harvest rate above that of the

random decision maker.

Table 1 offers additional perspective on the relative

performance of the heuristic and algorithmic approaches.

One difference is prominent: the heuristic process left 11

flights unused at the end of the season, while the auto-

mated process used up nearly all of the 67 available

flights. It is likely that this difference is driven in sub-

stantial part by the 5-day restrictions on flight crews—

more exactly, by the relative skill of the two approaches

to anticipate the importance of these constraints long be-

fore they are actively binding. The algorithmic procedure

‘‘anticipates’’ the possibility of bumping up against these

constraints, weeks in advance, and automatically adjusts

hurdle probabilities downward according to the proba-

bility of scenarios in which these constraints would bind.

Human analysts likewise attempt to weigh these same

factors in their heuristic calculus, but naturally find it

challenging to integrate the large number of possible fu-

ture scenarios into optimized choices. The likelihood in-

creases of miscalculations leading to substantial surpluses

or shortfalls at season’s end.

Table 1 offers another interesting observation: in this

case example, the two approaches perform about equally

well in terms of the yield of successful flights realized

as a fraction of the number of flights attempted. This

fraction was exactly one-half (28/56) for the heuristic

approach, and only slightly higher (34/66) for the al-

gorithmic procedure. The algorithmic approach was

much better, however, at avoiding type II errors: over

the course of the 160-day field season, the algorithm

missed only 11 of the days with conditions suitable for

data collection.10 It appears that the heuristic decision

process was too conservative at certain times during the

season, eschewing launches on days of only marginal

promise only to husband a surplus of flights that could

not be used before their expiry.

6. Conclusions

The algorithmic decision procedure outperformed the

heuristic decision process used by the RACORO in-

vestigators. This superior performance does not appear

to depend on improvements in forecasting technique: as

shown in Fig. 3, the GFS model upon which the auto-

mated forecasts are based does quite an imperfect job of

cloud forecasting. The automated system appears to do

a better job, not at forecasting per se, but at delivering

decision recommendations.

The result may seem paradoxical: how could inferior

forecasts yield superior decisions? The key reasons

concern the consistency and replicability of the auto-

mated approach. Because the automated system makes

forecasts using exactly the same approach each time, its

track record provides statistically sound guidance about

its future performance. To calibrate a probabilistic fore-

casting system, one needs a track record of performance

that is statistically sound. By giving up the benefits of

human input, one gains the opportunity to create a well-

calibrated probabilistic forecasting system that works

exactly the same way under all conditions. Human in-

tervention may indeed improve the quality of a single

forecast viewed in isolation. But a forecasting process

that incorporates human judgement produces signals that

are difficult to compare statistically with one another.

Critically, a decision maker cannot readily see how to

place a current forecast signal into the distribution of all

possible future signals that may be received over the re-

mainder of a field season. Yet that is precisely the in-

formation the decision maker needs, in order to gauge the

benefits of alternative courses of action.

It would appear that the combination of self-organizing

maps and dynamic programming shows substantial prom-

ise for application to other problems of stochastic opti-

mization. The core requirements include that the problem,

including its objectives, be sufficiently well structured that

it can be framed in terms of a formal mathematical model;

that the decision process be sequential; that the realization

of stated objectives depend on the resolution of some

stochastic phenomena; that the stochastic process be in

some way forecastable; and that historical data records of

matched forecasts and observations be available in suffi-

cient duration and granularity to allow for calibration of

a probabilistic forecasting system.

Most meteorological aircraft field campaigns satisfy

these criteria, and are good candidates for application of

TABLE 1. Summary of outcomes. Successes are defined as flights

launched on days with desired cloud conditions. Type I errors are

decisions to fly only to find no clouds, whereas type II errors are

decisions to stand down only to find that the desired conditions

existed.

Heuristic procedure Automated algorithm

Flights launched 56 66

Successes 28 34

Type I errors 28 32

Type II errors 17 11

10 The terms type I error and type II error are adapted from the

nomenclature on statistical hypothesis testing.
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the approach. Longer-term measurement programs, with

their emphasis on consistent sampling, and their pro-

portionately greater demands on human effort, will likely

benefit the most. Yet similar strategies seem likely to

be beneficial to most meteorological field experiments

where decisions on resource allocations are required. At

a minimum, the exercise of framing a field sampling

campaign formally as a problem of stochastic optimiza-

tion seems almost certain to deliver useful insights at both

the project planning and operational phases.

Creating an automated decision system calls for de-

velopment of both a forecasting component and an op-

timization component. Each component needs to be

customized carefully to the particular objectives of the

field campaign. For many phenomena, self-organizing

maps offer a replicable basis for creating a functional

system for generating probabilistic forecasts. But the

SOM approach is neither necessary for, nor universally

applicable to, all forecasting challenges. To be useful in

an automated decision system, the forecasting system

should be probabilistic, calibrated, and offer some ability

to discriminate between more versus less auspicious con-

ditions for data collection.

Care is likewise required to formulate the optimiza-

tion problem correctly for a given data collection chal-

lenge. Dynamic programming offers a general approach

well-suited to sequential decision-making subject to un-

certainty and resource constraints. But the exact formu-

lation of an optimization approach must be contoured

to the particular objectives of an individual field cam-

paign. For example, a campaign that calls for daily

decisions about both whether and where to fly will re-

quire a substantial refinement to the Cloud Hunter

model. Nonetheless, we believe that tools of stochastic

optimization show great promise in application to data

collection in meteorology.
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