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1. Introduction 
 
The purpose of this note is to describe a new high-resolution sea surface salinity (SSS) 
product that has been developed at the International Pacific Research Center of the 
University of Hawaii. The product is a weekly analysis on a near-global 0.5-degree grid 
for the period from September 2011 until the present. The input data are the Level-2 (L2) 
swath SSS data provided by the Aquarius/SAC-D satellite, a collaborative space mission 
between NASA and Argentina’s space agency. Since its launch in June 2011 and onset of 
data delivery in late August 2011, the Aquarius/SAC-D satellite has been providing 
space-based observations of SSS with a complete global coverage every 7 days.  

 
Aquarius/SAC-D is a focused satellite mission to measure SSS from space. The satellite 
is positioned on a polar sun-synchronous orbit crossing the equator at 6 pm (ascending) 
and 6 am (descending) local time. The Aquarius instrument consists of three microwave 
radiometers that generate three beams at different angles relative to the sea surface. The 
beams form three elliptical footprints on the sea surface (76 x 94 km, 84 x 120 km, and 
96 x 156 km) aligned across a ~390-km-wide swath. The emission from the sea surface, 
measured by the radiometers as an equivalent brightness temperature, is converted to 
SSS, subject to corrections for various geophysical effects. A detailed description of the 
Aquarius/SAC-D satellite mission and the Aquarius instrument can be found in Le Vine 
et al. (2007); and Lagerloef et al. (2008). 

 
SSS is an important variable that reflects the intensity of the marine hydrological cycle.  
Knowledge of the spatial and temporal distribution of SSS is essential for understanding 
the hydrological cycle and for climate monitoring and prediction. Knowledge of the 
distribution of SSS is also important for better understanding of the ocean circulation and 
its role in climate.  Aquarius satellite measurements are capable of achieving high spatial 
and temporal resolution because of their characteristics, yet they are contaminated by 
significant instrument noise and also contain large-scale satellite biases and spatially 
correlated errors (Lagerloef et al., 2013; Melnichenko et al., 2014).  

 
The possibility of correcting for various errors in Aquarius SSS data by incorporating 
available statistical information about the signal and noise into the mapping procedure 
commonly known as Optimal Interpolation (OI) was tested in a recent study by 
Melnichenko et al. (2014). A trial analysis in the North Atlantic demonstrated the utility 
of the OI technique and the potential of Aquarius SSS products to document salinity 
structure at fine spatial (~150 km) and temporal (1 week) resolution with an accuracy of 
0.2 psu or better.  The new near-global analysis that will be described in this note is also 
based on OI, yet with an additional step to correct the satellite SSS retrievals for large-
scale spatial biases using in-situ data.      
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2. Satellite SSS data, data quality control and correction for satellite biases 
 

2.1. Aquarius SSS data 
 

The satellite observations of SSS are obtained from Level-2 (L2) version 3.0 Aquarius 
data produced by the NASA Goddard Space Flight Center’s Aquarius Data Processing 
System (ADPS). The L2 data files, distributed by the Physical Oceanography Distributed 
Active Archive Center (PO.DAAC) of the Jet Propulsion Laboratory (JPL), contain 
retrieved SSS, navigation data, ancillary fields, quality flags, and other related 
information such as surface winds. The data are structured as a sequence of files, each 
corresponding to one orbit of Aquarius. An orbit is defined as starting when the satellite 
passes the South Pole. Individual observations along each orbit consist of a sequence of 
data points sampled at a 1.44-second (~10 km) interval. Each individual observation 
represents the average salinity in the upper 1-2 cm layer and over a ~100 km footprint 
(Le Vine et al., 2007; Lagerloef et al., 2008). The ancillary SSS data are provided from 
the global 1/12o data-assimilative Hybrid Coordinate Ocean Model (HYCOM). In 
Aquarius L2 data files, the HYCOM SSS is interpolated to the time and location of every 
Aquarius 1.44-second sample interval. A detailed description of Aquarius data can be 
found in the Aquarius User Guide (Aquarius Dataset Version 3.0).   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. (a) Example of along-track SSS (three beams; 390-km-wide swath) passing through the 
eastern North Pacific on September 30, 2012. Thin curves – raw data; thick curves – smoothed 
with a running Hanning filter of half-width of ~60 km (approximately half-width of the Aquarius 
footprint). Colors indicate the three Aquarius beams. (b) Latitude-time plot of SSS from beam 1 
(filtered) of the repeat track passing through the eastern North Pacific.  
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An example of L2 SSS data is shown in Figure 1, illustrating that there are at least two 
types of errors in the SSS retrievals. A significant source of error is the accuracy of 
individual measurements along the satellite tracks. An important aspect of this error is its 
random character and a very short wavelength. This short-wavelength noise is essentially 
‘white’ in nature and can effectively be suppressed by, for example, filtering the data 
along track such as shown in Figure 1 (heavy lines). Of much greater concern are 
differences between the three beams, which can be as large as 0.5-0.8 psu and appear to 
be correlated over large distances along the satellite tracks. This type of error is also 
illustrated by Figure 1. During the satellite pass over the eastern North Pacific on April 
21, 2012, the middle beam (red) delivered systematically lower SSS as compared to the 
other two beams. Such inter-beam biases are likely a manifestation of residual 
geophysical corrections. Because the three radiometer beams view the ocean surface at 
slightly different angles, each beam is affected by geophysical errors differently 
(Lagerloef et al., 2013).     

 
 

2.2. Data quality control 
 

In order to produce the gridded product, the L2 SSS data are first checked for quality. All 
observations are discarded if they fail any of the following quality flags: 7 (direct solar 
flux contamination), 8 (reflected solar flux contamination), 9 (sun glint), 12 (non-nominal 
navigation), 13 (radiometer telemetry), 14 (roughness correction failure), 16 (pointing 
anomaly), 17 (brightness temperature consistency), 19 (radio-frequency interference 
(RFI)), and 21 (reflected radiation from Moon or Galaxy). In the case of flags 19 and 21, 
the data are excluded from the analysis if the conditions indicated by the flags are either 
moderate or severe. For other flags, only severe conditions are taken into account. Also 
excluded from the analysis are data points that are contaminated by land (land fraction > 
0.005), sea ice (sea ice fraction > 0.005), sampled during high wind (wind speed > 15 
m/s) and/or in cold water (SST < 5oC). A detailed description of the Aquarius quality 
flags including recommended thresholds can be found in the Aquarius User Guide 
(Aquarius Dataset Version 3.0).   

 
2.3. Bias correction 

 
The next step in data processing consists of a large-scale adjustment of the satellite data 
relative to in-situ data. Analysis of long time series of Aquarius SSS data revealed that 
satellite retrievals have large-scale biases relative to in-situ data (Hacker et al. 2014). 
Their spatial distribution show clear zonality with large negative biases (up to 0.4 psu) in 
the tropics and positive biases in mid- and high-latitudes (Hacker et al., 2014; Meissner et 
al., 2014). The causes of the biases in Aquarius data are only partially understood, but 
may be related to SST-dependent errors in the dielectric constant and the model for 
atmospheric absorption, which are part of the retrieval algorithm (Meissner et al., 2014).  
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Figure 2. Mean spatial bias correction fields (psu) for Aquarius ascending (left) and descending 
(right) data; beam 1 (top), beam 2 (center), and beam 3 (bottom).  
 
 
Although the recent version of Aquarius data (3.0) includes an SST-adjusted SSS, the OI 
analysis described in this note utilizes standard SSS retrievals and implements an 
independent bias-correction algorithm. The SST-adjusted SSS, provided by the ADPS, is 
not utilized for the following reasons. First, the correction for the SST-dependent bias (in 
the form of quadratic regression on SST) has been developed using HYCOM SSS as a 
reference (Meissner et al., 2014) and thus can be subject to the model biases and 
uncertainties, arising from misrepresented physics, large gaps in the in-situ data coverage 
(in the case of data assimilation), errors in boundary conditions, etc. Second, the 
correction model uses ancillary SST fields, which are based on satellite SST observations 
optimally interpolated on a regular grid and which, in turn, include some sort of bias 
adjustment (Reynolds et al., 2007). In addition, SST fields exhibit patterns of strong 
seasonal cycle, which are not the same for SSS due to different natures of the forcing. As 
a result, the SST-dependent adjustment may introduce some false signals to the seasonal 
cycle in SSS. Finally, there are strong SST fronts, particularly in the tropics and along 
strong boundary currents, which are not necessarily associated with SSS fronts. In such 
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cases, the SST-dependent adjustment may cause appearance of false SSS fronts or distort 
the true signal.            

 
In the OI analysis, satellite biases are corrected relative to in-situ salinity data collected 
by Argo floats. The bias fields were constructed by differencing the Argo- and Aquarius-
derived SSS fields. The latter were derived using only ascending or only descending 
satellite observations and also separately for each of the three Aquarius beans. For this 
purpose, because of the large spatial structure of the biases (Hacker et al., 2014), the 
large-scale SSS fields from Aquarius were constructed by bin-averaging of raw Aquarius 
observations within 4ox4o spatial bins centered on a global grid with the grid spacing of 
2o in both longitude and latitude directions. The Argo-derived fields, which we regard as 
the “ground truth” at large spatial scales, are monthly-mean SSS fields obtained with 
variational interpolation of Argo buoy measurements (APDRC product). Only 
systematic, time-averaged biases are taken into account. Thus, there are six bias fields, 
shown in Figure 2. In order to remove the unwanted small-scale signals, arising primarily 
from irregular sampling, the bias fields were smoothed with a two-dimensional running 
Hanning window of half-width of 10o, generally consistent with the smoothness 
properties of the Argo-derived salinity fields.  

 
The bias-adjusted satellite observations adjS  are determined from the retrieved values  

obsS  as  
                                            SSS obsadj Δ−= ,                                               (1) 

where the bias SΔ  is determined by interpolating the bias fields, shown in Figure 2, into 
the locations of the satellite measurements according to the corresponding Aquarius beam 
and ascending/descending mode.  
 
3.4. Filtering 

 
The final step in data preparation consists of filtering the data along track as described in 
Melnichenko et al. (2014). The filter is a low pass Hanning filter of half-width of ~60 km 
(six times the along-track sampling), which has been found to perform quite efficiently to 
considerably reduce high-frequency instrument noise, yet preserve the ocean signal from 
over-smoothing (Melnichenko et al., 2014). An example is presented in Figure 1a. 
According to the degree of filtering, the SSS data are then sub-sampled every third point 
along track. 

 
3. General description of OI algorithm 

  
The interpolation expression for OI with N  observations can be written as (Bretherton et 
al., 1976; Le Traon et al., 1998):  
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where xŜ  is the interpolated value (or estimate) at the grid point x ;  0
xS  is the forecast 

(or “first guess”) value at the grid point x ; obs
iS  is the measured value at the observation 

point i : ii
obs
i SS ε+= , where iε  is random measurement error; 0

iS  is the forecast value 
at the observation point i ; A  is the NN ×  covariance matrix of the data  
 
                                         ><+>−−=< jijjiiij SSSSA εε))(( 00 ;                       (3) 
 
and C  is the joint covariance of the data and the field to be estimated 
 
                                          >−−=< ))(( 00

jjxxxj SSSSC .                                      (4) 
 
In (3) and (4), it is assumed (as is usually reasonable) that the errors and the field are not 
correlated. 
 
Analysis of Aquarius along track SSS data (e.g., Figure 1) reveals that there are long-
wavelength errors, referred to here as inter-beam biases, which are correlated over long 
distances along the satellite tracks. To incorporate statistical information on these errors 
into the OI scheme, we adopt the idea that has originally been developed for altimeter 
applications (e.g., Le Traon et al. 1998) and introduce the error covariance model for the 
Aquarius data in the form     

  22
Lwijji σσδεε +>=<   -if data points ji,  are on the same track and 

beam, and in the same cycle, and 
  2

wijji σδεε >=<             -otherwise,  

where ijδ  is the Kronecker delta, 2
wσ  is the variance of the uncorrelated (white) noise, 

and 2
Lσ  is the variance of the long-wavelength (along-track) error.  

 
Thus, the algorithm allows two types of random errors to contribute to the elements of the 
error covariance matrix: the white noise (diagonal elements), representing uncorrelated 
errors, and the long-wavelength error (off-diagonal elements), representing inter-beam 
biases that correlate over long distances along the satellite tracks. Each Aquarius beam is 
modeled as having independent errors. 

 
The OI analysis is determined relative to the first guess field, which is assumed to be a 
good approximation of the true state. The estimate and the observations are then equal to 
the first guess plus small increments. In this way, the grid point analysis consists of 
interpolation of the first-guess field to the observation points followed by interpolation of 
the differences between the observed and first-guess values back to the grid point. The 
grid point analysis is completed by adding the analysis increment to the first guess. 
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4. Specifics 
 

The OI method assumes that the first guess and statistics of the field to be analyzed are 
known a priory.  These parameters are the following. 

 
4.1. First guess 

 
The first guess fields are derived from monthly-mean SSS fields produced by the 
APDRC with variational interpolation of Argo buoy measurements. An example for the 
first week of September 2011 is presented in Figure 3a. The Argo-derived SSS fields are 
chosen because they are independent of the analysis of the satellite data and provide 
unbiased estimates of the first guess as compared to, say, climatological fields, which can 
be biased at large-scales due to the presence of significant trends related to climate 
change or due to their reliance on highly inhomogeneous multi-type-instrument historical 
data.  

 
4.2. Signal statistics 

 
The normalized spatial covariance of weekly SSS anomalies is described by the Gaussian 
function of the form  
                                         )//exp(),( 2222

yyxxyx RrRrrrC −−= ,                            (5) 

where  xr  and yr  are spatial lags in the zonal and meridional directions, respectively, and  

xR  and yR  are the zonal and meridional correlation scales. This particular form of the 
correlation structure is chosen because the associated spectrum is positive everywhere 
and because the resulting covariance matrixes are always positive definite (Weber and 
Talkner, 1993), which is a strict requirement on the choice of a possible analytical form 
of the correlation function in the OI analysis (Gandin, 1965; Bretherton et al., 1976).  
 
Both the zonal and meridional correlation scales in Eq. (5) are allowed to vary with 
latitude. The meridional scales have been determined by fitting the Gaussian model to the 
sample covariances estimated in 10o latitude bins from the Aquarius L2 data as described 
in Melnichenko et al. (2014).  Based on the observed structure (Figure 3), the latitudinal 
dependency of  yR  is modeled by the following functional form  

                                92))225/)4(exp(14)( 2 +−−= yyRy  km,                  (6)  
where y  is latitude in degrees. Thus, the meridional scales are somewhat larger in the 
tropics (106 km at 4oN) than at high latitudes (92 km). 
 
The zonal correlation scales at mid- and high latitudes are set to equal the meridional 
scales, while in the tropics they are scaled to represent the zonal elongation of correlation 
as follows 
                                     )1)25.56/)4(exp(5.0)(()( 2 +−−= yyRyR yx .             (7) 
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Near the equator, the aspect ratio yx RR /  equals 1.5 ( =xR  160 km at 4oN) and 
gradually decreases toward higher latitudes (Figure 3). Poleward of about 20o, the 
correlation function (5) becomes isotropic ( == yx RR 92 km). We note, however, that 
our assumptions of the zonal correlation scales are somewhat arbitrary and are mostly 
based on previous observational studies (e.g., Delcroix et al., 2005; Reverdin et al., 
2007).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Meridional (blue) and zonal (red) correlation scales applied in the OI SSS analysis. The 
green curve shows the along track correlation scales determined by fitting the Gaussian model to 
the sample covariances estimated in 10o latitude bins from the Aquarius L2 data as described in 
Melnichenko et al. (2014).  
 
 
4.3. Error statistics 

 
The error covariance consists of two parts. The first part is white noise, representing 
uncorrelated errors. Given prior filtering of Aquarius L2 SSS data, the variance of the 
white noise is assumed to be 10% of the signal variance, independent of the geographical 
location. The second part is introduced as a long-wavelength error (by analogy with 
altimeter applications (Le Traon and Ducet, 1998)) and is justified in our study by the 
fact that the relative biases between the Aquarius beams correlate over long distances 
along the satellite tracks (Melnichenko et al., 2014; Hacker et al., 2014). The objective 
here is to take into account this type of error correlation to reduce inter-beam biases, 
which, if not properly accounted for, result in artificial north-south-striped patterns in 
mapped SSS fields (Melnichenko et al., 2014). The error correlation structure is 
represented by the exponential function of the form 

                                             )/exp()( LL RllC −=                                       (8) 
where l  is the along track separation distance and =LR 500 km is the exponential decay 
scale. The estimate of LR  is obtained by fitting the curve (8) to the inter-bean bias 
statistics evaluated by comparison of the covariances of the inter-beam differences for 
Aquarius and ancillary SSS data as described in Melnichenko et al. (2014).  
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Figure 4. (a) Variance of long-wavelength error (psu2) in 20o longitude x 20o latitude boxes and 
(b) the zonal average of the variance.   
 
 
The variance of the long-wavelength error varies with latitude from about 0.04 psu2 in the 
tropics to 0.1 psu2 at high latitudes (Figure 4). Following the latitudinal changes in both 
the error and signal variances (not shown), the ratio of the error variance to the signal 
variance, ,η  is approximated by the following analytical curve 

                             3.0)43.1/))400/exp(1(*2 2 +−−= yη .                         (9) 
Thus, the relative variance of the long-wavelength error is set to vary from 30% in the 
equatorial region, where the signal variance is large, to more than 150% at high-latitudes, 
where the error variance is large.   
 
4.4. Implementation 

 
The OI SSS analysis is performed on a 0.5o longitude x 0.5o latitude grid every week 
starting from September 2011. The weeks are defined to correspond to the standard 
Level-3 product produced by ADPS.  The OI SSS analysis is run in a local 
approximation; namely, only data points in a smaller sub-domain around the analysis grid 
point are used. The radius of the sub-domain is defined to be four times the space 
correlation scale, which allows for accommodating both the signal and error correlation. 
The local approximation also helps to reduce the effect of spatial inhomogeneity in the 
signal and error statistics (Weber and Talkner, 1993). 

 
5. Global OI SSS fields 

 
Figure 5 presents example maps of the global SSS distribution for the week September 
10-16, 2011. The first map (Figure 5a) is Argo-derived distribution and is used as the first 
guess field for OI SSS analysis. The other two are two versions of OI SSS analysis - one 
version is what we call conventional OI analysis (Figure 5b) that does not take into 
account the long-wavelength error in Aquarius data and one version is advanced OI 
analysis (Figure 5c) that takes the long-wavelength error into account as discussed in 
section 4.3. This example allows us to demonstrate the importance of incorporating this 
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type of error information into the mapping procedure, which is specific to the Aquarius 
instrument.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Weekly SSS fields (psu) for the week 10-16 September 2011 constructed from (a) Argo 
data (first guess field for OI SSS analysis), (b) Aquarius OI SSS analysis that does not take into 
account long-wavelength error, and (c) Aquarius OI analysis that takes into account statistical 
information on long-wavelength error.  
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As expected, the three SSS fields exhibit the same large-scale patterns, such as higher 
salinity in the subtropics in all oceans and lower salinity in the tropics and at high 
latitudes, particularly in the North Pacific. There are notable differences between the 
maps as well. In particular, the Argo-derived SSS field (first guess for Aquarius OI SSS 
analysis) is very smooth, which is not surprising, given the sparse coverage of in-situ 
measurements. To the contrary, the Aquarius OI SSS maps (e.g., Figures 5b and 5c) show 
a very detailed structure. In particular, the North Pacific inter-tropical convergence zone 
(ITCZ) appears as a relatively narrow band of low-salinity water extending all the way 
across the North Pacific. The most notable feature in the North Atlantic is the plume of 
low-salinity water extending far offshore off the coast of South America. The feature is 
associated with the Amazon River outflow. However, the conventional OI algorithm 
(Figure 5b) fails to correct for correlated errors (inter-beam biases) that manifest 
themselves as characteristic north-south-striped patterns aligned with the satellite tracks. 
These stripes are particularly visible at high latitudes, where the error variance is large 
(Figure 4). In contrast, the advanced OI scheme, which takes the statistics of these errors 
into account, effectively eliminates the striping, such that the resulting SSS map 
resembles the true ocean, free from spurious structures. At the same time, it is evident 
that the resolution capability of the OI SSS analysis is not affected. 
 
To quantify the magnitude and spatial distribution of SSS variability in the OI SSS 
analysis, Figure 6 shows the standard deviation of SSS computed from the time series of 
weekly OI SSS maps over the 2-year period from September 2011 through August 2013. 
Several regions stand out as having the largest SSS variability: the rainy belts (low local 
salinity, Figure 5c) associated with the ITCZ in the North Pacific and North Atlantic 
(standard deviations around 0.3-0.5 psu), the South Pacific convergence zone, the eastern 
equatorial Pacific, the tropical Indian Ocean, the western boundary current regions of the 
Kuroshio and Gulfstream, the Southern Ocean, as well as the areas near outflows of 
major rivers, such as the Amazon.  Maximum values of the SSS standard deviation, 
exceeding 1 psu, are observed in the far eastern equatorial Pacific, the Bay of Bengal, and 
the western part of the tropical North Pacific. Apart from the regions of high SSS 
variability, the standard deviation of SSS has typical values of around 0.1-0.15 psu. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The standard deviation of SSS computed from weekly time series of OI SSS fields for 
the 24-month period from September 2011 through August 2013. 
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6. Validation 

 
Following Melnichenko et al. (2014), we use Argo buoy observations of salinity in the 
near-surface layer to estimate the error statistics for the OI SSS analysis. The Argo buoy 
network provides quasi-random geographical distribution of about 1100 in-situ salinity 
measurements for each week. Only measurements shallower than 6 m depth and flagged 
as good from each Argo profile are used in this analysis. The error statistics for the OI 
SSS analysis are calculated by comparing buoy measurements for a given week with SSS 
values at the same locations obtained by interpolating the corresponding SSS maps.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. (a) Weekly mean differences and (b) RMSD between Argo buoy data and Aquarius OI 
SSS analysis. The error statistics are computed by comparing Argo buoy measurements for a 
given week with SSS values at the same locations obtained by interpolation of the corresponding 
OI SSS maps.  
 
 
Figure 7 shows the bias (mean average of the differences between the product and buoy 
data over all buoy locations) and root-mean-square difference (RMSD) of the OI SSS 
analysis evaluated against concurrent Argo buoy observations. The product yields the 
time-series of the global bias oscillating around zero (Figure 7a). The standard deviation 
of the weekly biases is 0.008 psu. The RMSD between the OI SSS analysis and 
concurrent buoy data is smaller than 0.2 psu for nearly all weeks. The mean RMSD of the 
analysis over the period September 2011 – March 2014 is 0.18 psu.  
 
The utility of the OI SSS product is further illustrated by Figure 8a, which shows the 
histogram distribution of the differences between the buoy data and SSS analysis.  The 
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OI estimates have an overall good agreement with the buoy data such that the histogram 
of the differences is quite narrow, with ~57% of the differences smaller than 0.1 psu and 
~84% smaller than 0.2 psu. The number of outliers, defined here as the differences larger 
than 0.5 psu, is less than 2%. Their geographical distribution is shown in Figure 8b. It is 
not surprising that the majority of ‘outliers’ are located in the areas of strong variability 
in SSS (Figure 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. (a) Statistics of the differences between Argo buoy data and Aquarius OI SSS analysis. 
(b) Locations of ‘outliers’, defined as the differences large than 0.5 psu. The error statistics are 
computed by comparing Argo buoy measurements for a given week with SSS values at the same 
locations obtained by interpolation of the corresponding Aquarius SSS maps.  

 
The geographical distribution of the RMS error for the OI SSS analysis is shown in 
Figure 9. The RMS error was computed in 8-degree spatial bins from the differences 
between the weekly SSS maps and the corresponding in-situ observations. The bin size 
was selected to ensure an adequate number of collocations (>100) in each bin. Figure 9 
demonstrates that the largest RMS errors, exceeding 0.2 psu, are found in the regions of 
strong variability in SSS (Figure 6), such as along the North Pacific and North Atlantic 
ITCZ, the South Pacific convergence zone, the Gulfstream, and near the outflows of 
major rivers, such as the Amazon in the North Atlantic. However, these relatively large 
discrepancies between the Aquarius and buoy data are not necessarily errors in Aquarius 
observations or errors in the mapping procedure. Large RMS differences between the 
mapped SSS and in-situ observations can be due to 

1) Strong vertical gradients of salinity in the near-surface layer, such that salinity at 
~5 m depth, sampled by a typical Argo buoy, differs significantly from the 
surface salinity, sampled by Aquarius. Such conditions are frequently observed in 
the tropics, particularly in the rainy belts associated with the ITCZ (Henocq et al., 
2010).  

2) Unresolved small-scale variability. In the presence of strong SSS gradients, the 
difference between a point measurement by a buoy and the area averaged SSS 
sampled by Aquarius (or the grid cell of the OI SSS analysis) can readily exceed 
0.2 psu (Lagerloef et al., 2010; Vinogradova and Ponte, 2013).  

3) Unresolved temporal variability (Vinogradova and Ponte, 2013). 
4) Errors in the SSS maps.  
5) All of the above. 
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Figure 9. Geographical distribution of the RMS differences (psu) between the weekly OI SSS 
analysis and in-situ buoy data over the period from September 2011 through March 2014. The 
error statistics are computed by comparing Argo buoy measurements for a given week with SSS 
values at the same locations obtained by interpolation of the corresponding OI SSS maps. 
 
In summary, production of our advanced OI SSS maps based on Aquarius data is driven 
by two primary goals. The first is to provide a value-added SSS product, which has 
reduced inter-beam biases and biases with respect to Argo maps, for global and regional 
research and applications. The second is to provide bias maps to quantify the space/time 
structure of the biases in order to identify and understand potential corrections to the 
geophysical model function and algorithms used to calculate SSS. We understand that the 
resulting OI SSS maps may still have errors, both globally and regionally. We encourage 
users to continue to validate the Aquarius data and quantify noise and errors in 
their research. We are especially interested in receiving feedback on the utility of 
the product and potential issues relevant to noise and biases especially from regional 
studies, which may have access to higher quality and enhanced resolution in-situ 
data sets. 
 
 
7. Access to the data 
 
The Aquarius OI SSS analysis can be accessed from the APDRC webpage 
http://apdrc.soest.hawaii.edu/ either through the Live Access Server or OPeNDAP.  
 
Digital data of the weekly OI SSS analysis (netCDF files) are also available at 
http://iprc.soest.hawaii.edu/users/oleg/oisss/glb/OISSS_V3.0_weekly/. Figures are here: 
http://iprc.soest.hawaii.edu/users/oleg/oisss/glb/OISSS_PNG_V3.0_weekly/. 
 
Digital data of the monthly mean SSS fields can be downloaded from 
http://iprc.soest.hawaii.edu/users/oleg/oisss/glb/OISSS_V3.0_monthly/ . Figures are here: 
http://iprc.soest.hawaii.edu/users/oleg/oisss/glb/OISSS_PNG_V3.0_monthly/  
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8. Copyright and terms of use 
 
The Aquarius OI SSS dataset is open for free unrestricted use. The dataset is a research 
quality product. Errors reported to the authors by users will be published and corrected in 
the next update of the dataset.  
 
Use of the dataset should be acknowledged as follows: 
“This study used Aquarius sea surface salinity optimal interpolation analysis provided by 
APDRC/IPRC of the University of Hawaii”. 
 
Reference to this technical paper:   
Melnichenko, O., P. Hacker, N. Maximenko, G. Lagerloef, and J. Potemra: Aquarius sea 
surface salinity optimal interpolation analysis, IPRC Technical Note No. 6, October 7, 
2014, 18p. 
 
Comments, questions regarding the Aquarius OI SSS dataset and requests for the data can 
be directed to any of the authors: 
 
Oleg Melnichenko 
Email: oleg@hawaii.edu 
Tel: 1-808-956-0747 
 
Peter Hacker 
Email: phacker@hawaii.edu 
 
Nikolai Maximenko 
Email: maximenk@hawaii.edu 
 
Gary Lagerloef 
Earth and Space Research 
Email: lager@esr.org 
   
James Potemra 
Email: jimp@hawaii.edu 
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