Trends in Hail in China during 1960-2005

Baoguo Xie, Qinghong Zhang *

Department of Atmospheric Science, School of Physics, Beijing, 100871, China

Yuqing Wang

Department of Meteorology and International Pacific Research Center, University of Hawaii at Manoa, Honolulu, HI 96822

ABSTRACT The annual variation and trend in hail frequency during a 46-yr period from 1960 to 2005 in China are documented in this study. All analyses are based on a comprehensive collection of observational hail data and operational atmospheric sounding data released by the National Meteorological Information Center (NMIC) of China. The results show no trend in the mean Annual Hail Days (AHD) from 1960 to early 1980s but a significant decreasing trend afterwards. The different trend of the AHD at each station displays a marked regional dependence across China, however. Convective Available Potential Energy (CAPE), strength of vertical wind shear, and mean Freezing-Level Height (FLH) are analyzed to understand the observed long-term trends in hail frequency.

Key Words: Hail; Trend; CAPE; Global Warming.

1. Introduction

By definition, hail is precipitation in the form of balls or irregular lumps of ice produced by

* Corresponding author: Dr. Qinghong Zhang, Department of Atmospheric Science, School of Physics, Peking University, Beijing 100871, China. E-mail: qzhang@pku.edu.cn.
convective clouds [Changnon, 1978]. Studies on hail climatology, especially the long-term variation
of Annual Hail Days (AHD, defined as the sum of hail days of all individual stations per year in
China), are very important for understanding the regional climate change. In China, hail occurs
almost everywhere except for a few areas of the south and east plains [Liu and Tang, 1966; Zhang et
al., 2008]. Liu and Tang [1966] documented the annual and seasonal variations of hailstorms in
China. The limitation of their work was the use of data that only covered 10 years (7 years for some
stations). Nevertheless, Liu and Tang was the first to have produced the hail climatology for the
whole of China. A brief review of the early effort on the studies of hail climatology in China can be
found in Xu [1983]. A recent study on hail climatology in China has been recently done by Zhang et
al. [2008], who documented the spatial distribution and seasonal and diurnal variations of hail
occurrence based on the hail observations since 1961. However, a study of the country-wide hail
temporal climatology in China with long-term hail observations is yet to be carried out. The purpose
of this study is to use the observed hail data at all stations in China to analyze the long-term temporal
climatology of hail in China with the focus on the linear long-term trend.

2. Data and Analysis Method

The National Meteorological Information Center (NMIC) of China has compiled a complete
historical hail dataset of 753 stations, which includes hail data for all weather stations in the surface
meteorological observational network over the whole of China from 1951 to 2005. Because of some
unexpected and historical reasons, for instance, some stations were relocated and some were
established during this period, not all stations have the complete records of hail. In our study, a
station with one year data missing, the year is regarded as an invalid year. Data in an invalid year are
not considered in our analysis. To ensure a relatively large and continuous data records, we chose 523 stations with complete observations from 1960 to 2005 in this study (Fig. 1). We focus on the annual variations and trend of hail frequency across mainland China during 1960-2005. According to the trend of the AHD at each station, the considered stations were classified into three types, namely, with up trend, down trend, and flat (no) trend.

The atmospheric sounding observations from 146 weather stations (see Fig. 1) also obtained from NMIC are used to calculate the following three variables to understand the variation of AHD.

1. Convective Available Potential Energy (CAPE): calculated as the buoyant energy to accelerate an air parcel from the surface.

2. Freezing-Level Height (FLH): defined as the height at which temperature becomes below zero above this level.

3. Vertical Wind Shear (VWS): defined as the magnitude of the vector difference between 500 hPa and 850 hPa winds.

Each station has sounding data twice daily at 0800 LST and 2000 LST, respectively. In the data preprocessing, any days with only one sounding record or any stations with the data less than 46 years were discarded from the analyses. Since the wind observations in our sounding data are available from 1980, only the variation of the mean vertical wind shear strength from 1980 to 2005 is considered in this study. As the hail events mainly occur in warm seasons, we only analyze the dynamical and thermodynamic factors between April and October.

3. Results

We first calculated the trend of the AHD at each station from 1960 to 2005. The trend at each
station was then classified into one of the three groups: up trend and down trend (both significant at
95% confidence level), and no trend (Fig. 1). Only one station at Xinghai shows up trend of AHD.

About 25% stations (131 stations) show distinct down trend of AHD. They are mainly in northwest
and northeast China. The remaining 391 stations (accounting for about 74% of all stations) show no
significant trend from 1960 to 2005. Most of these stations are located in south China.

Considering the different trends in north China and south China, we show in Fig. 2 the mean
AHD of south China, north China, and the whole of China, respectively. In addition to the short-term
interannual variations, the mean AHD experienced relatively long-term trends. As we can see from
Fig. 2, two distinct periods can be easily identified. In the first period from 1960 to early 1980s, there
is no statistically significant up or down trend in the mean AHD (significant at 95% confidence level).

In the second period from early 1980s to 2005, the mean AHD exhibits a significant down trend. The
mean AHD across China was almost halved during the second period (from 1.9 to 1.0). Interestingly,
the trend shown in Fig. 2 bears a similarity to that of AHD in the United States [Changnon, 2000].

This may be an indication of the global climate change.

Figure 3 shows the mean hail frequency as a function of month and year over China. Consistent
with the results of Zhang et al. [2008], hail events occur most frequently in warm seasons during
June-September with the highest frequency of occurrence in June in most regions of China.

November and December show the lowest mean hail frequency of hail occurrence. Large down
trends in monthly mean hail frequency during the 46 year period coincide with the high long-term
mean monthly hail frequency of occurrence (Fig. 3). On the contrary, the months with the low mean
hail frequency show different long-term trends. As we can see in Fig. 3, there is a small down trend
in November, and no trend in December, January, February and May (significant at 95% confidence
level). Since the monthly mean hail frequencies and their trends in these months are both small, we will focus on our following analyses in warm seasons to understand the large-scale atmospheric conditions that may control the long-term changes in hail frequency of occurrence across China.

Hail is favored by both low freezing level in the ambient atmosphere and strong updrafts to allow ice particles to grow [Dessens, 1986]. Hail occurs mostly in association with thunderstorms in a convectively unstable environment with abundant low-level moisture supply [Longley and Thompson, 1965]. Localized unstable air masses, vertical shear of horizontal wind, baroclinic instability of frontal systems, lake/topographic effects, and even cloud microphysics may play important roles in triggering hailstorms [Changnon, 2000]. However, when considering causes of the long-term trend, especially the significant down trend in annual hail frequency of occurrence after early 1980s, it is impossible to examine the local/regional and weather conditions favoring the hail events. We thus focus on some climatic parameters that are considered to be related to the formation process of hail.

Freezing Level Height (FLH): Hail forms above the freezing level through complicated cloud microphysical processes. Whether the hail can occur in a convective thunderstorm partly depends on whether the liquid drops have sufficient momentum to go through the FLH. If the liquid drops cannot go above the freezing-level, they will remain liquid state. Therefore, Increasing FLH is generally unfavorable for the hail formation. Based on the sounding data, we show in Fig. 4a both the averaged FLH at all stations and that at stations with decreasing trend in AHD in China. In general, the FLH averaged at stations with AHD decreasing trend is lower than that averaged at all stations for any given year, indicating that low FLH favors the hail formation processes. Consistent with the down trend in AHD in China, the mean FLH shows an up trend during 1980-2005. The present mean FLH is about 200 meters higher than that averaged during 1960-1979 (Fig.4a). Santer et al, [2003]
reported that the height of tropopause has increased by several hundred meters as a result of the
warming trend in the whole troposphere since 1979 and they contributed the increase to the direct
effect of the global warming. This also implies an increase in FLH, as what we can see over China in
Fig. 4a. To this point, the increasing trend in the mean FLH could be one of the important climatic
factors that contributed to the down trend in the AHD in China.

Convective Available Potential Energy (CAPE): CAPE represents the amount of buoyant energy
available to accelerate an air parcel vertically, or the amount of work an air parcel does on the
environment. The higher the CAPE, the more energy is available to foster convective storm growth
[Doswell and Rasmussen, 1994]. Therefore, long-term variation of CAPE presents changes in the
instability of the atmosphere. Using the 46-yr sounding data, we calculated warm season mean
CAPE in North China and South China (Fig. 4b). Note that these are mean values calculated only for
days when CAPE is positive and normalized by the long-term mean value across the whole of China.
We can see that the mean atmosphere became more and more unstable in the past 46 years and the up
trend in CAPE (Fig. 4b) contrasts the down trend in hail frequency as shown in Fig. 2. Interestingly,
although hail events mainly occur in north China, the CAPE in north China is less than that in south
China, indicating that there is discrimination between severe convection and CAPE as presented by
Rasmussen et al. [1998]. Meanwhile, the result also indicates that CAPE is not the unique ingredient
in hail formation and that large CAPE does not always produce severe convection. This is in
agreement with the findings by Brooks et al. [2007] for the United States.

Zhao [2006] analyzed the relation between precipitation and aerosol in east China and found that
aerosols play an important role in the reduction of precipitation in eastern central China. Thus,
because both the atmospheric instability and amount of aerosols increased, the negative effect of
aerosols offset the positive effect of the former, causing the significant reduction of precipitation in the region. As one type of precipitation, hail could also be reduced due to the negative effect of atmospheric aerosols. On the other hand, Wang and Zhou [2005] found a general decreasing trend in annual mean precipitation and extreme precipitation events in central, north, and northeast China but an increasing trend in Yangtze River basin during 1960 and 2001. They indicated that the long-term trend in precipitation was associated with a weakening trend in the southwesterly monsoon over East Asia. Therefore the down trends in hail in China could be a result of the reduction of precipitation in the predominant hail-producing regions, such as north and northeast China (Fig. 1). Although both annual precipitation and extreme precipitation events increased in the Yangtze River valley and south China, the hail frequency shows no trend due to the increasing trend in FLH in the region (Fig. 4a).

Vertical wind shear: Strong vertical shear is a triggering mechanism for instability energy to release and for hail to form and also favors the growth of hail in thunderstorms [Longley and Thompson, 1965; Etkin and Brun, 1999]. To estimate the change in vertical wind shear, we calculated the mean vertical wind shear in warm season and analyzed its variation and trend. Since the wind observations in the sounding data are available from 1980, only the variation of the mean vertical wind shear in warm season during 1980-2005 is given in Fig. 4c. Although there is strong interannual variability, a linear down trend is still clear in vertical wind shear both averaged at the stations with no trend and those with down AHD trend. This indicates a general weakening of the mean baroclinity associated with the meridional temperature gradient in the mid-lower troposphere over China in response to the global warming in the last 2-3 decades [Zhai and Eskridge 1996]. Although it is stronger in any given year at the stations with down AHD trend than those with no trend, the mean vertical shear should not play a dominant role in the observed down AHD trend since
the slopes of the trend in vertical shear for the stations with no trend and for those with down trend are similar.

4. Summary

Hail records provided by NMIC from 1960 to 2005 were used to analyze the long-term trend in annual hail days in China. Two distinct periods in the 46 year were identified. In the first period (1960-early 1980s), AHD showed little linear trend, while in the second period (early 1980s and afterwards), there was a significant down AHD trend days. This down trend in AHD was mainly contributed by the down trend in warm season during June-September. Analysis of some climatic factors indicated that the rising trend in freezing-level height, which increased by about 200 m during 1960-2005 is responsible for the decreasing trend in hail frequency. Although it is considered as a triggering factor for hailstorms, the vertical shear seems not to have played a dominant role in the observed down trend in hail frequency in China since a similar weakening trend in the annual mean vertical shear is found for the stations with and without down AHD trends. The long-term change in CAPE seems to have little correlation with the down trend in hail frequency, however. We considered that although the CAPE increased in the past, the annual mean precipitation and extreme precipitation events in north and northeast China decreased as a result of the weakening of the East-Asian summer monsoon [Wang and Zhou 2005], leading to a decreasing trend in hail frequency in these regions. On the other hand, the rising in freezing-level and the increase in aerosols may offset or even dominate the positive effect of CAPE, resulting in little trend in hail frequency in south China. The results from this study may imply a possible reduction of hail occurrence under the global warming due to the increase in freezing-level height in China.
Acknowledgements: This study is supported by Chinese National Science Foundation under Grant 40675022. YW is supported in part by the JAMSTEC, Japan through its sponsorship to the International Pacific Research Center at the University of Hawaii. We thank NMIC to allow us to access their hail and sounding data.

References

Rasmussen, E. N., and D. O. Blanchard (1998), A baseline climatology of sounding-derived

Figure Caption

Figure 1. Locations of the 523 surface stations and their annual hail day (AHD) trends in China with high-quality hail-day records during 1960-2005. Circles indicate the locations of 145 radiosonde stations with sounding data.

Figure 2. Mean AHD variations and trends, respectively, in the whole of China, south China, and North China during 1960-2005. Note that here and hereafter, north China and south China refer to regions north and south of 30°N in China.

Figure 3. The mean hail frequency against month and year (filled color in the left panel) and mean seasonal variation (blue bar in the right panel) of hail frequency and their trends (red curve in the right panel, and each green square indicates that the down trend is significant at 95% confidence level) in China from 1960 to 2005. Note that the dashed lines in the right panel show the 95% confidence intervals.

Figure 4. (a) Variation and trend of the annual mean FLH during the period of 1960-2005. “Average” and “AHD Down” denote the averaged FLH values at the stations with flat and down AHD trends, respectively. (b) Same as in (a) by for NCAPE (normalized CAPE) averaged in North and South China. Note that NCAPE in South China is greater than that in North China and both show an up trend. (c) Variations and trends of the annual mean vertical wind shear averaged at the stations with no trend and those with down AHD trend during the period of 1980-2005.
Figure 1. Locations of the 523 surface stations and their annual hail day (AHD) trends in China with high-quality hail-day records during 1960-2005. Circles indicate the locations of 145 radiosonde stations with sounding data.
Figure 2. Mean AHD variations and trends, respectively, in the whole of China, south China, and North China from 1960 to 2005. Note that here and hereafter, north China and south China refer to regions north and south of 30°N in China.
Figure 3. The mean hail frequency against month and year (filled color in the left panel) and mean seasonal variation (blue bar in the right panel) of hail frequency and their trends (red curve in the right panel, and each green square indicates that the down trend is significant at 95% confidence level) in China from 1960 to 2005. The dash lines show the 95% confidence intervals.
Figure 4. (a) Variation and trend of the annual mean FLH during the period of 1960-2005. “Average” and “AHD Down” denote the averaged FLH values at the stations with flat and down AHD trends, respectively. (b) Same as in (a) but for NCAPE (normalized CAPE) averaged in North and South China. Note that NCAPE in South China is greater than that in North China and both show an up trend. (c) Variations and trends of the annual mean vertical wind shear averaged at the stations with no trend and those with down AHD trend during the period of 1980-2005.