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Abstract

In most applications of numerical ocean models, artificial boundaries are introduced to limit the domain. Along such a
Ž .boundary we need to apply what is often referred to as an open boundary condition OBC . In this paper a number of local

methods used in barotropic ocean models are applied and discussed for the stratified case using a normal mode approach.
The OBCs are the simple conditions: clamped, prescribed and zero gradient; the radiation conditions: Camerlengo–O’Brien,
Orlanski and a method of characteristics based on linear equations; and a sponge type condition: the flow relaxation scheme.
The OBCs have been implemented in a 3-layer ocean model and examples of how the various OBCs perform for three
simple flow situations are investigated. The cases are: internal wave radiation, a quasi-steady coastal jet and the response to
a storm moving across a strait. It is found that the flow relaxation scheme and the method based on characteristics perform
well for the test cases in general, although some of the simpler methods give better results in individual cases. q 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

Numerical simulations of real oceanic flows will
in most cases have an artificial boundary which
consists of open water. The only exceptions are
models of lakes, land-locked seas and the global
ocean. Along such an artificial or non-physical
boundary, inflow and outflow can occur and waves
propagate into, or out, of the model domain. A wide
range of time scales are of interest in the modelling
of stratified seas, ranging from quasi-steady circula-
tions to internal waves with periods of an hour or
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less. This makes it difficult to treat all flows with the
same method. However, if one can choose the posi-
tion of the artificial boundary such that it simplifies
the physics, a number of methods are available. This
requires that the nature of the equations does not
change, e.g. from being hyperbolic in nature to
parabolic or elliptic in the vicinity of the artificial
boundary. It should be emphasized that a perfect
artificial boundary condition does not exist. In fact, it

Ž .has be shown e.g. Oliger and Sundstrom, 1978 that¨
adding such conditions to the primitive equations
may cause the combined problem to be ill-posed;
thus a unique solution does not exist. This means
that in general a ‘‘best’’ artificial boundary condition
cannot be determined. Consequently, a more prag-
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matic approach to artificial boundaries is used, where
the actual method applied depends on the physics of
the problem considered.

In the literature, different terminologies are used
for artificial boundaries depending on the scientific
discipline and on the nature of the flow problem. For
instance, the term ‘‘free’’ boundary is often used
when there is no forcing along such a boundary. For
problems which include waves, the term ‘‘non-re-

Žflecting’’ boundary is often used Givoli, 1991,
.1992 . If waves are only allowed to leave the do-

main, the term ‘‘absorbing’’ boundary has been used
Ž .Engquist and Majda, 1977 . We will refer to a
general artificial boundary as an ‘‘open’’ boundary,
the term most frequently used for atmospheric and
oceanic applications.

Ž .The topic of open boundary conditions OBCs
has received much attention in numerical fluid dy-
namics, in particular for the Euler equations. For

Ž .linear hyperbolic systems, Engquist and Majda 1977
proposed approximation methods of successively in-
creasing order. Using third order schemes in time
and space, they obtained solutions with very low
reflection coefficients for surface gravity waves with
normal as well as oblique incidence on the open
boundary. However, their schemes are computation-
ally expensive and must be reformulated depending
on the flows, which makes them less attractive. A
more general approach is to apply the method of

Žcharacteristics to hyperbolic systems e.g. Thomp-
. Ž .son, 1987, 1990 . Poinsot and Lele 1992 extended

this procedure to the Navier–Stokes equations and
discussed in detail the complications involved in
applying boundary conditions to the multi-dimen-
sional case. They point out that non-reflecting
boundary conditions for one-dimensional flows can-
not easily be extended to two or three dimensions.
One physical boundary condition they recommend,
however, is to relax towards the pressure at infinity
when appropriate. Boundary conditions for the re-
maining variables are computed from the interior
using modified equations. A review of the general
literature on OBCs in fluid mechanics is given by

Ž .Givoli 1992 .
The literature specific to oceanic and atmospheric

problems is rather limited and the studies have been
concentrated on the shallow water equations. A num-

Žber of investigators e.g. Camerlengo and O’Brien,

1980; Beardsley and Haidvogel, 1981; Røed and
Smedstad, 1984; Chapman, 1985; Røed and Cooper,

.1986, 1987; Martinsen and Engedahl, 1987 worked
with linear, depth-integrated ocean models.

For the stratified ocean, the problem is fully
three-dimensional and becomes more complicated.
Near the surface, momentum advection is often very
important, making the solution non-linear, and inter-
nal waves can propagate vertically as well as hori-
zontally. In order to apply the techniques developed
for barotropic models to the stratified case, we will
only consider motion with a small aspect ratio, i.e.
the horizontal scale of the motion is much larger
than the vertical scale. In that case, one method is to

Žproject the solution on vertical normal modes Jen-
.sen, 1993 . In that work, a radiation condition was

applied separately to each vertical mode and then
transformed back to physical space. For models with

Ž .a limited number of layers or levels this is compu-
tationally feasible and may be applied to any OBC.

Secondly, our philosophy in this paper is to pri-
marily investigate the simplest and most commonly
used OBCs. Consequently, we will concentrate on a
small, but representative number of OBCs reviewed

Ž .and tested by Chapman 1985 and Røed and Cooper
Ž .1987 for barotropic models. In their work the
following OBCs were applied to the surface eleva-

Ž . Ž .tion: clamped CLP and zero gradient GRD . For
the velocity field, one-dimensional free wave radia-

Ž . Žtion conditions were applied: Orlanski OL i.e.
.Orlanski, 1976; Miller and Thorpe, 1981 and

Ž .Camerlengo and O’Brien 1980 , referred to as CO.
Ž . ŽA sponge condition SPO for velocity Israeli and

. Ž .Orzag, 1981 and a method of characteristics CHA
Ž .by Hedstrom 1979 were also investigated. In addi-

Žtion, a forced wave radiation condition, Røed and
.Smedstad, 1984 and a two-dimensional free wave

Ž .radiation condition Raymond and Kuo, 1984 were
Ž .included by Røed and Cooper 1987 , but equivalent

conditions for the stratified case will not be consid-
ered in this work. Given the many difficulties associ-
ated with OBCs for three-dimensional flows, we will

Ž .also examine the flow relaxation scheme FRS as an
open boundary condition. This was adopted for a
barotropic ocean model by Martinsen and Engedahl
Ž . Ž1987 and later applied to a stratified ocean Cooper
and Thompson, 1989; Slørdal et al., 1994; Engedahl,

.1995 .
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A 3-layer model will be used to investigate three
Ž .cases, inspired by the cases used by Chapman 1985

Ž .and Røed and Cooper 1987 . The first is an internal
wave radiation case where propagation is allowed
only along one horizontal coordinate. With no rota-
tion, this represents the simplest possible free inter-
nal wave propagation test. The second test is a
coastal jet along a straight coast, forced by a wind
stress uniform in the alongshore direction. This is a
simple accelerating flow, representing a quasi-steady
circulation. The last case is a more realistic problem,
where a moving storm is crossing an infinitely long
channel.

Radiation boundary conditions have in a few cases
been applied to stratified ocean models. In the UK

Ž .FRAM model, Stevens 1991 used an Orlanski-type
phase velocity to modify advection of tracers. Oey

Ž .and Chen 1992 applied a one-dimensional radiation
condition to momentum, using a prescribed wave
propagation speed close to the first baroclinic mode.
In limited area modelling applications of the Bryan–
Cox model, restoring zones towards climatology have

Žbeen used for temperature and salinity e.g.
.Sarmiento, 1986; Semtner and Chervin, 1992 . For

Ž .instance, in a recent high resolution 1r6 deg study
of the North Atlantic, the Newtonian damping time
scale varied linearly from 5 to 50 days over 4r3 deg,
Ž .Beckmann et al., 1994 . This technique corresponds
to a sponge layer with relaxation to observations and

Žis equivalent to the FRS Martinsen and Engedahl,
.1987 .

2. The ocean model

ŽThe multi-layer ocean model by Jensen 1991,
. Ž1993 , modified to include bottom topography Jen-

.sen, 1996 , is used here in a local Cartesian coordi-
nate system. We assume that the x-axis points to-
wards the east, the y-axis points towards the north
and the vertical z-axis is upward. Depending on the
problem to be considered, we will either ignore
rotation or use the f-plane approximation, i.e. the
Coriolis parameter is assumed constant.

Consider an ocean consisting of N layers of
uniform density as shown in Fig. 1. The layers are
labelled with increasing numbers downward. Let us
assume that all layers have a positive thickness

Fig. 1. Vertical structure of the 3-layer isopycnal model. Layer j
has a constant density r and instantaneous thickness H . For thej j

model runs in this paper each layer is on average 100 m thick. In
the case of a storm over a channel, however, a shallow bank with
a height of 80 m over the bottom is present as shown.

everywhere. This implies that layers are not allowed
to surface or merge, and that the bottom topography
is always in the lowest layer.

Let the velocity components toward the east and
north be u and Õ, respectively. We choose zs0 to
be the surface of the ocean at rest. Define vertically
integrated volume transport components U and Vj j

by:

zjq1

U s u d z 1Ž .Hj
z j

Ž .between two isopycnal surfaces z x, y,t andj
Ž .z x, y,t , with an equivalent expression for V .jq1 j

The thickness of layer j defined by this integration,
Ž .is H s z yz and the vertically averaged den-j jq1 j

sity is r . The transport equation for U becomes:j j

EU E U 2 E U Vj j j j
q q y fVjž /ž /Et Ex H E y Hj j

EF t x , t t x ,b
j j jxsygH qF q y 2Ž .j j

Ex r rj j

where the lateral friction term is given by:

Ujx 2 4F sH A= yA = 3Ž .Ž .j j 4 ž /Hj
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with a harmonic diffusivity A and biharmonic diffu-
sivity A . Similarly for V , we have:4 j

EV E U V E V 2
j j j j
q q q fUjž / ž /Et Ex H E y Hj j

EF t y , t t y ,b
j j jysygH qF q y 4Ž .j j

E y r rj j

with:

Vjy 2 4F sH A= yA = 5Ž .Ž .j j 4 ž /Hj

In the equations above g is the acceleration of
gravity, while t is the tangential stress due to verti-
cal friction. The superscripts on t denote the x or y
component and t or b refers to the top or bottom
interface of the layer. The vertical stress for the
x-direction at the top of each layer is:

U U 2jy1 jx , t xt st d qr A yj w 1 j j z ž /H H H qHjy1 j jy1 j

= 1yd 6Ž .Ž .1 j

and at the bottom:

U U 2j jq1x ,bt sr A y 1ydŽ .j j z N jž /H H H qHj jq1 j jq1

qr RU d 7Ž .j j N j

with equivalent expressions for the y-direction. In
these expressions, t denotes a wind stress, d isw i j

the Kronecker delta, A is a constant vertical turbu-z

lent eddy viscosity, and R is a bottom friction
coefficient.

Ž . Ž .In Eqs. 2 and 4 the vertically integrated pres-
sure divided by g r defines a dynamic height givenj

by:
jy1 r yrŽ .j i

F sghy H yH 8Ž . Ž .Ýj i 0 i
rjis1

where the surface displacement h is given by:
N

hs H yH 9Ž . Ž .Ý i 0 i
is1

and H is the thickness of layer j at rest. In order to0 j

save computational resources, the surface elevation
Ž .in Eq. 8 is multiplied by a constant gF1 in order

to slow down external gravity waves. For instance, if
g s 1r64, barotropic gravity waves, including
coastal Kelvin waves, will propagate with 1r8 of
their correct speed, while barotropic Rossby waves
with wave lengths of 2000 km or less will propagate
with 85% to 100% of their correct phase speed. For a
typical stratification, baroclinic waves will propagate
with an error of 3% or less in phase speed. Slowing
down the barotropic waves will increase their inter-
action with baroclinic modes. However, as long as
the speed of propagation of the external gravity wave
is kept well separated from that of the internal
modes, the effect is insignificant. Details about the
gravity wave retardation method are given in Jensen
Ž .1996 .

The continuity equation becomes:

EH EU EVj j j
q q s0 10Ž .ž /Et Ex E y

where it has been assumed that no cross-isopycnal
transport takes place.

ŽDiscretization is on a C-grid Arakawa and Lamb,
.1977 , which is most commonly used for limited

area ocean models. The equations are solved using a
forward explicit time scheme for the frictional terms
and a leapfrog scheme for other terms. The computa-
tional mode associated with the leapfrog scheme is

Ž .removed using a time filter Asselin, 1972 .

3. Open boundary conditions

The open boundary conditions have been divided
into three categories: simple conditions, radiation
conditions and relaxation schemes. As noted by Røed

Ž .and Cooper 1986 , this distinction is somewhat
arbitrary since the simple schemes mathematically
are special cases of the radiation schemes. However,
since the numerical implementation is different for
the stratified case, it is natural to make a distinction
between these two groups of OBCs.

3.1. Simple conditions

The simplest condition prescribes the value of a
variable along the open boundary. If one indeed can
prescribe the exact condition on the boundary consis-
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tent with the interior numerical solution, there is not
an open boundary problem to be solved. However, in
nearly all cases, at least part of the boundary solution
is not known a priori, and must be computed. If F is
the unknown part of any prognostic variable, we

Ž .define the clamped CLP OBC as one that does not
change in time:

EF
s0 11aŽ .

Et

ŽThis simple condition has been widely used e.g.
.Beardsley and Haidvogel, 1981 . On a uniform mesh

the grid point positions are at x s iD x, where D xi

is the grid spacing. If the boundary is at x , theB
Ž .numerical implementation of Eq. 11a is:

F nq1 sF n 11bŽ .B B

where n refers to the time level.
Nearly as simple is the zero gradient condition:

EF
s0 12aŽ .

En

where the derivative is taken normal to the open
boundary. The numerical implementation for a
boundary to the east is simply:

F nq1 sF nq1 12bŽ .B By1

where the right hand side is computed from the
governing equations. For gravity waves both these
conditions are 100% reflective, i.e. the total incident

Ž .wave energy is reflected Nitta, 1964 . If for instance
F equals the pressure or a related variable such as a
surface elevation or interface displacement, the latter
condition gives the same reflection as a wall condi-
tion, i.e. us0, where u is the velocity component
normal to the boundary. The reflected wave using
the clamped condition has opposite phase of the
wave reflected from a wall. So adding or averaging

Ž . Ž .Eqs. 11a and 12a leads to an improved condition:

EF EF
q s0 13aŽ .

Et En

which corresponds to radiating out waves with a
non-dimensional phase speed of 1. This condition

Ž .has been discussed in detail by Smith 1974 . The
Ž .numerical form of Eq. 13a is found by inserting

values for the gradient of F evaluated at time step

nq1, or alternatively, averaging the numerical ex-
Ž . Ž .pressions Eqs. 11b and 12b :

1nq1 n nq1F s F qF 13bŽ .Ž .B B By12

Ž . Ž . Ž .In the test cases, Eqs. 11b , 12b and 13b are
applied to the layer thickness H . Since the harmonicj

Ž . Ž .friction terms Eqs. 3 and 5 require grid points
outside the actual computational domain, a zero gra-
dient condition involving mirror points is applied to
the transport components U and V , but only for thej j

purpose of calculating this friction.

3.2. Radiation conditions

This class of conditions assume a free wave prop-
agation. Most often normal incidence on the bound-
ary is assumed, so the method can be based on the
one-dimensional wave equation:

EF EF
qc s0 14Ž .F

Et Ex

where F is a field variable for which an OBC is
imposed. A review of numerical implementations for

Ž .two-dimensional flows oblique incidence can be
Ž . Ž .found in Hedley and Yau 1988 . Orlanski 1976

proposed to calculate the phase speed using finite

Fig. 2. Relaxation functions varies between 0 and 1 across the
relaxation zones. Four typical relaxation functions are shown: the

Ž .parabolic variation full line and the hyperbolic tangent variation
Ž . Ž .dash–dot line were used by Martinsen and Engedahl 1987 . In

Ž .the present work, an 8th order polynomial variation dotted line
was used, following closely the sponge variation used in the
MIKE21BW wave model.



( )T.G. JensenrJournal of Marine Systems 16 1998 297–322302

Fig. 3. Vertical cross-section of the initial condition for the
internal wave propagation test.

differences. If the open boundary is to the east, a
non-dimensional phase speed is computed as:

F n yF ny1
By1 By1

c smax ymin ,1 ,0 15Ž .F ny1 ny1½ 5½ 5F yFBy1 By2

Ž .Eq. 15 can be put in dimensional form by multiply-
Žing by D xrD t. Note that negative values e.g. prop-

.agation away from the boundary of c are truncatedF

to zero. The boundary value using the Orlanski
Ž .condition OL is calculated as:

F nq1 sc F n q 1yc F n 16Ž . Ž .B F By1 F B

Ž . Ž .The form given by Eqs. 15 and 16 is due to
Ž .Miller and Thorpe 1981 and is simpler than the

original formulation. Camerlengo and O’Brien
Ž . Ž .1980 , CO , simplified the OL condition by using
c s1 if c F0, i.e. only the sign of c is used.F F F

This condition deliberately overestimates the out-
ward propagation speed. An even simpler approach
is to choose extrapolation in all cases, i.e. c s1.F

Ž .Eq. 16 is traditionally applied to the transport
components, i.e. U and V , rather than the layerj j

thickness H , which in this case is computed fromj
Ž .the continuity equation Eq. 10 .

The evaluation of c is simple for flows withoutF

stratification. For a layered model, a computation
layer by layer is a straightforward extension of the
two-dimensional case. This strategy will work if a
single vertical mode dominates the flow. If two or
more vertical modes contribute significantly to the
flow simultaneously, a decomposition onto linear
vertical modes is, at least in principle, a better

Ž .method Jensen, 1993 . For this reason, we have
applied the OL and CO conditions to the amplitudes
of each vertical mode of the transport components,
and after computation of the boundary amplitudes,
transformed back to layer formulation. For simplic-
ity, we will assume that the normal mode decomposi-
tion is independent of time and space. The normal
mode decomposition is shown in detail in Appendix
A.

By considering the system of equations as hyper-
bolic, the method of characteristics may be applied.
If we project the linear equations onto vertical nor-
mal modes, we simply get a shallow water equation

Ž .for each vertical mode e.g. Gill, 1982, pp. 167–175 .
By solving for the eigenvalues and eigenvectors for
each mode, the equations can be written in character-
istic form. The derivation is given in Appendix B.

Ž .For a west or left boundary we find:

˜EU E
1 Žk . Žk .˜s c Uyc h qU 17Ž .˜Ž . F2

Et Ex

where the tilde indicates a projection on linear verti-
cal modes, cŽk . is the phase speed of mode k, and UF

is the sum of the Coriolis term and the frictional
Ž .terms. For a single layer, Eq. 17 is the same as the

Ž .Hedstrom 1979 condition as tested for a barotropic
Ž .ocean by Røed and Cooper 1987 .

3.3. Relaxation schemes

One alternative to letting disturbances out of the
computational domain, is to absorb them in a sponge
layer. A good strategy is to use a generalization of

Ž .this concept, the flow relaxation scheme FRS , as a
frame work in which any open boundary condition

Ž .may be added Martinsen and Engedahl, 1987 . Since
the FRS was developed to impose boundary condi-
tions from a large scale atmospheric model to a fine

Žgrid limited area atmospheric model Davies, 1976,
.1983 , it is practical to implement a simple data

Ž .assimilation scheme e.g. nudging for the entire
model domain. In that respect, prescribing an OBC

Ž . Ž . Ž . Ž .Fig. 4. Reference solution for the internal wave radiation test shown as a x–t diagram for layer 1 a , layer 2 b and for layer 3 c .
Vectors show the velocity, while contours show layer thickness anomalies in m. The numbers on the horizontal axis indicate grid number.
The unit on the vertical time axis is h. Maximum velocity arrows are 0.12 mrs.
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can be considered a special case of a data assimila-
tion process. The FRS allows specification of the
boundary solution for any variable as a sum of an
external value, and a value calculated from the inte-
rior. The scheme is applied as follows: for any

ˆvariable the interior solution F is calculated. An
OBC solution F is calculated on the open bound-L

ary from local interior values. The externally im-
posed solution on the boundary is F , where theobs

subscript implies that this value often has been ob-
tained from observations. The boundary solution is
then given by:

F̃sF qF 18Ž .L obs

The FRS technique is now applied as nudging in the
vicinity of the open boundary:

˜ ˆFsa x , y , z Fq 1ya x , y , z F 19Ž . Ž . Ž .
where F is the updated solution, which has been

˜relaxed towards the boundary value F . The relax-
ation function a is usually chosen to be 1 on the
boundary and decreases to zero in the interior of the
domain.

˜The separation of F into two parts is of course
artificial. It simply points out that the solution we
relax toward, preferably should be a combination of

Žone that is computed from the interior by a special
.method and one that we wish to prescribe, for

instance a forced tidal wave. Note that if F is a
˜velocity component and Fs0, the FRS zone is

reduced to a simple sponge layer.
The optimal width of the relaxation zone and the

functional variation within it, depends on the prob-
lem. Assume that the relaxation zone extends from
xs0 to xs1, with the boundary at xs1. Martin-

Ž .sen and Engedahl 1987 used widths of 3–10 grid
points and used the following functions:

n
a x s1y tanh 1yx 20Ž . Ž . Ž .ž /2
and:

a x sx 2 21Ž . Ž .
where n is the number of grid points in the relax-

Ž .ation zone. The form given by Eq. 20 over a width

of 10 grid points was also used by Cooper and
Ž .Thompson 1989 . In a general purpose code, a more

convenient form is:

p
a x s 1yq xqq 22Ž . Ž . Ž .

The tanh formulation provides a steeper filter func-
tion than a second order polynomial. A similar varia-
tion can be obtained using ps6 and qs0 in the

Ž .polynomial form Eq. 22 .
In the Danish Hydraulic Institute Boussinesq wave

Ž .model MIKE21BW the expression used for sponge
layers is:

a x s 1yab Ž1yx .n

c 23Ž . Ž .Ž .

Ž .with cs1 Larsen and Darcy, 1983 . This form
does not equal one for xs1. A polynomial with
ps8 and qs0.4 has similar variation in the inter-

w xval 0–0.8 but goes to one for xs1. Another
Ž . Ž .possibility is to choose csar ay1 in Eq. 23 .

Fig. 2 shows the variation over the relaxation zone
for a few choices of a .

Applying the FRS technique is equivalent to
changing the equations in the FRS zone. For a
variable F , we can write:

EF a
˜s f F y FyF 24Ž . Ž .Ž .

Et D t 1yaŽ .

where the second term on the right hand side is due
to the FRS. Note that this corresponds to adding a
linear sourceror sink term. However, the relaxation
coefficient goes to infinity in the edge of the domain,
where the calculated solution is replaced by the
boundary solution. A finite relaxation factor is ob-
tained using a-1, which corresponds to a larger
time constant in the adjustment. One advantage of

Ž .the form Eq. 24 is that it can be used directly in an
implicit scheme.

Ž .Fig. 5. Contours of layer thickness anomalies and current vectors shown in x–t diagrams for the upper layer using zero gradient a ,
Ž . Ž .clamped b and the average of clamped and zero gradient c . Units are the same as in Fig. 4. Thick arrows indicate velocities in excess of

0.12 mrs.
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4. Test problems

The open boundary conditions are tested on three
stratified flow problems. The first of these is pure
radiation of gravity waves, the second is a simple
coastal current and the third is the passage of a storm
across a strait. These cases are similar to those

Ž .investigated by Røed and Cooper 1987 .

4.1. One-dimensional internal graÕity waÕes

One of the simplest possible stratified wave prop-
agation problems is that of internal waves in one
dimension. Consider an infinitely long channel with
a flat bottom. We shall assume that there is no
variation in one of the horizontal directions, and that

Ž .there is no rotation fs0 . This is accomplished by
using a single interior grid point in the y-direction
and free slip boundary conditions along the walls.
We consider a case without external forcing and
initially the fluid is at rest with a level surface.

The channel has 3 layers of constant density, each
100 m thick on average, for a total depth of 300 m.
The density jump between the layers is constant
Ž 3.1.55 kgrm . This depth and stratification results in
a long surface gravity wave speed of 54 mrs but is
slowed down to 6.6 mrs, when we use gs1r64 in

Ž .Eq. 8 . There are two internal gravity wave modes
with phase speeds of 1.25 and 0.70 mrs, respec-
tively. The only stress included is harmonic friction;
that is, A is zero, with As300 m2rs.4

In order to generate waves, there is a discontinu-
ous step of 20 m in the upper layer thickness. This is
compensated by the thickness of layer 2, so layer 3

Ž .has a constant thickness Fig. 3 . There are no
pressure gradients in layer 1 initially, since the sur-
face is level. In layers 2 and 3 there is a horizontal

Žpressure discontinuity high pressure to the right in
.Fig. 3 , which accelerates the flow in the direction of

low pressure.
A grid spacing of 11 km was chosen and the

model was integrated for 8 days with a time step of
600 s. A reference solution was obtained in a domain

Ž .so wide i.e. )7000 km that reflections cannot
return from the boundaries to the central part of the
domain during the time of integration.

Fig. 4 shows the reference solution in a x–t
diagram for a subdomain which contains the 30 grid

Ž .points 330 km in the center, where only waves
propagating away from the discontinuity exist. A
surface wave is generated by the pressure discontinu-
ity and causes the surface to rise on the left and fall
on the right side of the discontinuity. These surface
fronts propagate away with the external gravity wave
speed and leaves a weak barotropic current flowing
from right to left in Figs. 3 and 4.

Let us consider a location away from the disconti-
nuity. After passage of the first baroclinic mode, an
upper layer flow to the right, which nearly compen-
sates the deep flow in layer 3, is established. The
thickness of layer 2 is nearly constant and the flow is
weak in that layer, until the front associated with the
second vertical mode passes. A projection of the

Ž .solution on vertical modes see Lighthill, 1969 also
reveals a very small amplitude of the first vertical
mode in layer 2. After passage of the second vertical
mode, all available potential energy has been con-
verted into kinetic energy: a steady baroclinic current

Ž .is left behind. The upper layer transport left to right
is nearly, but not quite, compensating the transport in
layers 2 and 3. The maximum current is 0.1 mrs and
is found in layer 1. A similar example of wave
adjustments in a stratified fluid can be found in Gill
Ž .1982, p. 164 .

For the test of OBCs we use a smaller domain,
where the artificial boundary is placed 30 grid points
away from the pressure discontinuity. An excellent
open boundary condition should give a solution
nearly identical to that in Fig. 4. In ocean models,
the simplest solution is to place a vertical wall at the
boundary. Fig. 5a shows the result for that case. The
external mode contaminates the solution everywhere
after about 20 h. The first baroclinic mode reflects
after 80 h and severely distorts the solution in the
domain as it propagates back towards the center of
the basin. This closed wall boundary condition can
be considered the ‘‘reference worst case’’ scenario
for the present problem. Some open boundary condi-
tions are not necessarily better. In fact, the zero

Ž . Ž .gradient condition Eqs. 12a and 12b gives exactly
the same solution as the wall for this case.

Poor choices in open boundary conditions can be
worse than a wall: Fig. 5b shows the results using

Ž . Ž .the clamped condition Eqs. 11a and 11b , where
the thickness of each layer is held at its initial value
along the open boundaries. Currents up to 0.36 mrs
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Ž . Ž . Ž .Fig. 6. As Fig. 5, but for the Camerlengo–O’Brien OBC a , the Orlanski OBC b and the method of characteristics c .
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are found in the two lower layers because the pres-
sure difference between right and left edge in Fig. 3
is held constant. However, this condition does allow
inflow and outflow past the artificial boundaries and
note that the thickness anomaly of the reflected wave
has the opposite sign as that of the wave reflected
from a wall.

Ž . Ž .Condition Eqs. 13a and 13b , which corre-
sponds to selecting the average of the zero gradient
and the clamped condition shows a solution slightly
better than the wall solution: the external mode has

Ž .been removed Fig. 5c . In an explicit model, the
time step is chosen so that the Courant number is
just below one in order to minimize the computa-
tional effort. Consequently, the fast external wave

Ž .propagation satisfies the radiation condition Eq. 14 .
Ž .Not surprisingly, the extrapolation condition Eq. 16

with c s1 gives us exactly the same result.F

Figs. 6 and 7 show solutions using selected radia-
tion conditions. The formulation by Camerlengo and

Ž . Ž .O’Brien 1980 CO removes the external mode, but
is weakly unstable and cause an acceleration of the

Ž .flow Fig. 6a . This weak instability is easily re-
moved by occasional smoothing along the open
boundaries, but reflections still occur. The solution
in Fig. 6a was obtained without a filter, but for

Žlonger integrations a Hanning filter a binomial 1–
.2–1 filter , applied every 10 time steps, is sufficient

to remove this instability. The filter is only applied
in the direction perpendicular to the boundary over
the nearest 3 rows of grid points closest to the open

Žboundary. Smoothing every time step or over addi-
.tional rows of grid points adds excessive diffusion

along the boundary.
Ž . Ž .The Orlanski OL condition Fig. 6b based on

the normal mode decomposition from Appendix A

works nearly perfectly. However, for this particular
problem, a natural separation of modes occurs, and

Ž .computing the phase speeds from Eq. 15 layer by
layer works almost as well.

Ž .The method of characteristics Fig. 6c is nearly
as good as OL. However, note that the current in the
center of the domain is not steady due to weak

Ž .reflections. In layer 2 not shown these reflections
are more noticeable.

Fig. 7a shows the best results obtained with a 10
grid points wide sponge. Velocities were relaxed

Ž .toward zero using ps4 and qs0 in Eq. 22 . The
thicknesses of the layers were computed from conti-

Ž .nuity Eq. 10 . A wider sponge will reduce the
magnitude of the reflections, but also increase com-
putational costs.

When applying the FRS it is important to relax
toward the correct solution. This is clearly demon-
strated in Fig. 7b, where the solution was relaxed
toward horizontal isopycnals. This is the correct
solution after the fronts associated with three vertical
modes have passed. However, the velocities were
relaxed toward zero, which is the correct initial
condition. Relaxing toward the initial condition for
both velocity and layer thickness in each layer gives

Ž .excellent results Fig. 7c . Similarly, relaxing toward
constant thickness of each layer will work if the
correct velocities after the frontal passage could be
specified. For the solutions in Fig. 7b,c a 10-point
wide relaxation zone was used on each side and

Ž .ps8 and qs0.4 was used in Eq. 22 . With a 5
grid points wide FRS zone, the results were still
good, with reflections similar to those seen for the
CHA method.

The best OBC for this case is OL based on a
normal mode decomposition. A close second best is

Ž .Fig. 7. As Fig. 5, but using a 4th order polynomial sponge condition on the velocity components a , FRS relaxing towards zero for
Ž . Ž .velocities and zero layer thickness anomaly b and FRS relaxing towards the initial condition c . The 10-point wide sponges or relaxation

zones on each side of the domain of interest are not shown in the plots.

ŽŽ . Ž ..Fig. 8. Reference solution for a coastal jet at day 20 using periodic boundary conditions for layers 1–3 a – c in the east–west direction.
Along the northern boundary, the clamped condition is used. Contours show layer thickness anomalies in meters, while the vectors show

Ž . Ž . Ž .currents. Contour intervals are 10 m a and b or 5 m c . Maximum velocity vector is 0.4 mrs. Numbers along each axis refer to grid
points.

Fig. 9. Contours of layer 1 thickness anomalies and current vectors for the coastal jet problem at day 20 using walls at the eastern and
Ž . Ž . Ž . Ž . Ž . Ž .western boundary a , the clamped OBC b and the Orlanski condition c . Contour intervals are 5 m a and b or 10 m c . Maximum

velocity vector is 0.4 mrs. Thick arrows indicate velocities larger than 0.4 mrs. Numbers along each axis refer to grid points.
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the FRS using a 10-point relaxation zone and the
third best performance was obtained by the method

Ž .of characteristics CHA using normal modes.

4.2. Coastal current

We consider a rectangular ocean with a straight
coast to the south. We use a f-plane at 24.58N and a
domain which is 660 km wide in the alongshore
direction and extends 330 km into the ocean from
the coastline. The initial thickness of each layer is
100 m with the same densities as in the previous
case, and the sea is at rest. The forcing, which is
applied instantaneously, is an eastward alongshore
wind which varies offshore as:

t x st exp yyrL 25Ž . Ž .w 0

where Ls132 km sets the e-folding scale and the
magnitude of the wind stress is given by t s0.10

Nrm2. Along the coast we apply the no-slip bound-
Ž .ary condition U sV s0 for all layers. In order toj j

adequately resolve the boundary layer along the coast,
a constant harmonic friction coefficient of 400 m2rs
was used, while other stresses were set to zero. The
horizontal grid spacing was 11 km in both directions
and a value of gs1r16 slowed the barotropic grav-
ity wave phase speed down to 13.2 mrs, which
allowed a time step of 100 s.

Along the northern boundary the thicknesses of
Ž .all layers are held fixed CLP OBC as suggested by

Ž .Røed and Cooper 1986 for a similar test case. In
this problem there is no variation in the alongshore
direction, so we use periodic boundary conditions at
the cross-shore boundaries on the layer thickness and

Ž .transports for the reference solution Fig. 8 . The
model is integrated for 20 days. The Ekman transport
is towards the coast, which increases the upper layer
thickness and sets up alongshore velocities in a few
days. Layers 2 and 3 have negative thickness anoma-
lies along the coast. An eastward geostrophic trans-
port exists in the boundary layer near the coast. The
transport in each layer is accelerating linearly in time

Žif friction is absent e.g. see Csanady, 1982, pp.
.75–91 for a discussion of analytical solutions . At

day 20, the maximum alongshore velocities in layers
1, 2 and 3 are 0.37, 0.27 and 0.23 mrs, respectively.

For this problem we find, not surprisingly, that
the zero gradient condition works perfectly. To ma-
chine precision we get the same solution as for
periodic boundary conditions. Another simple solu-
tion is to place walls at the ends. A north–south jet
along the eastern wall lets some fluid out of the
northern clamped boundary, but a substantial cy-

Ž .clonic recirculation is present Fig. 9a . In contrast,
using clamped boundary conditions along all bound-
aries, results in a strong outflow on the eastern

Ž .boundary Fig. 9b . The numerical solution is subject
to a weak instability, which can be removed by
decreasing the time step to 60 s and by spatial
smoothing along the outflow boundary. The Hanning
filter described in Section 4.1, but applied only every
100 time steps in the direction perpendicular to the
boundary and every 20 time steps in the direction
parallel to the boundary, is sufficient to make the
computation stable. Applying the filter to both open
boundaries, and more frequently in the direction
perpendicular to these, improves the solution further.
The reason is that such a filter indirectly imposes a
zero gradient condition rather than a pure CLP con-
dition.

The simplest method based on radiation condi-
tions, the extrapolation condition and the sum of the
clamped and the zero gradient condition also works
extremely well for this simple case. However, the
cases where the wave speed is computed numerically
do poorly. Since there is only acceleration of cur-
rents it is not surprising that methods based on wave
propagation fail. Fig. 9c shows the best of these
schemes, which was OL based on normal modes.
Currents are underestimated and a weak recirculation
is seen in the northern part of the domain. Using the
more efficient CO scheme with a layer by layer
approach, only degraded the solution in Fig. 9c
slightly.

Ž . Ž .Fig. 10. As Fig. 9, but for the characteristic boundary condition a , the FRS used as a sponge b and FRS relaxed towards the solution at
Ž . Ž . Ž .the center of the basin c . In b and c the 10-point wide sponges or relaxation zones on each side of the domain are not shown on the

Ž . Ž . Ž .plots. Contour intervals are 5 m a and b or 10 m c .
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Fig. 11. Model domain for storm case. The shaded area shows the position of a bank, which reduces the depth from 300 m to a minimum of
220 m. The storm track is shown by the dashed line. The circles show the position of maximum winds at 18, 22 and 26 h, respectively.
Numbers along each axis refer to grid points.

Ž .The method of characteristics Fig. 10a does not
induce any artificial recirculation, but overestimates
the maximum current velocities by 24% in the sur-
face layer and more than 50% in the bottom layer.
The method is also sensitive to the normal mode
decomposition. For example, if we use the identity

Ž .matrix, which corresponds to apply Eq. B.19 to
each layer, currents are strongly underestimated and
a fairly strong recirculation occurs in all layers. In
that case the solution is similar to that in Fig. 10b,
which shows the upper layer solution when the FRS
is used as a simple 10-point wide sponge. One way
to improve on the FRS solution is to relax towards a
‘‘correct’’ solution. For instance, relaxation towards
the solution at the previous time step along a cross-
section taken at the center of the domain works very

Ž .well Fig. 10c . However, the cumulative effect of
relaxing towards a previous time step, slows down

the currents slightly compared to the reference solu-
tion.

For this test case, GRA is perfect. Schemes based
Ž . Ž . Ž .on extrapolation, i.e. Eqs. 13a , 13b and 16 with

c s1 also work well. The CHA scheme is accept-F

able, while FRS requires a reasonably correct bound-
ary solution.

4.3. Storm oÕer a strait

This is a more realistic case with a cyclonic storm
crossing an infinitely long strait or channel. The
width of the strait is 330 km and we want to model a
660 km wide section using OBCs. Bottom topogra-
phy in terms of a double cosine shaped subsurface

Ž .bank is present in the lowest layer Fig. 11 . The
maximum height above the sea bed is 80 m and the
horizontal dimensions of the depth anomaly are 240

Fig. 12. Reference solution of the flow at 48 h for the storm case. Contours show the layer thickness anomaly with 2 m interval and the
ŽŽ . Ž ..vectors show the velocity for layers 1–3 a – c . In layer 3, only contours down to y20 m are shown over the shallow topographic

feature. Maximum velocity arrows are 0.9 mrs. Numbers along each axis refer to grid points.
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by 120 km. Along the northern and southern coast-
lines the no-slip boundary condition is applied as in
the previous case. Biharmonic diffusion is applied,
subject to the additional boundary condition:

Uj2
= s0 26Ž .ž /Hj

The lateral diffusivities for momentum are As100
m2rs and A s1011 m4rs, while the vertical turbu-4

lent eddy viscosity coefficient was A s10y3 m2rs.z

A bottom friction coefficient Rs10y6 sy1 was
used. The resolution and the time step are the same
as in the previous case.

The storm is moving in from the west-northwest
with a speed of 11 mrs over the northeastern part of
the channel, and is crossing the open boundary, so
that we have the case of strong forcing at the edge of
our domain. Maximum wind stress of 2.0 Nrm2

occurs 200 km from the center of the storm. The
storm track is shown in Fig. 11, with storm positions
at 18, 22 and 26 h. The circumference of the storm
shows where winds are at the maximum. The model
was integrated for 48 h.

Fig. 12 shows the reference solution for all 3
layers. This solution was obtained by extending the
length of the model domain to 1980 km and applying
different OBCs. It was verified that the solution in
the central third part of the extended domain did not
depend on the OBCs during the first 48 h. For the

Ž .truncated domain Fig. 11 , there is strong forcing
outside the domain, preventing us from getting the
same solution as the reference even with a perfect
OBC.

Given the difficulties with the simple tests above,
one might expect even worse results here. However,
away from the boundaries, all runs are in fact reason-
able for the upper layer. This is due to the strong
direct local response to the wind. Maximum currents
are about 0.9 mrs in the upper 100 m. Coastal
Kelvin waves are generated and propagate along the

northern and southern boundaries. A solution with
acceptable OBCs should not have any Kelvin waves
propagating along the eastern or western boundaries.

Ž .Fig. 13 shows results from layer 2 using a wall a ,
Ž . Ž .CLP b and the GRA condition c , while Fig. 14

Ž . Ž .shows the results from applying CO a , CHA b
Ž .and FRS with 10-point wide relaxation zones c . It

is noteworthy, that the circulation in the clamped and
zero gradient solutions are as unrealistic as for the
wall condition. The CHA solution has Kelvin wave
propagation along the eastern boundary, but is other-
wise acceptable. The CO solution is marginally bet-

Ž .ter than the OL solution not shown , while the FRS
solution is closest to the reference.

5. Summary and discussion

The most commonly used open boundary condi-
tions were presented in Section 3. These were the
clamped and zero gradient as well as a number of
one-dimensional radiation conditions. The method of
characteristics based on linear equations was pre-
sented as a more complete alternative to let gravity
waves out of the computational domain. The philoso-

Ž .phy in the flow relaxation scheme FRS is to relax
the interior solution in the vicinity of the boundary to
an external ‘‘correct’’ solution. When used as an
OBC the FRS is in essence a generalized sponge in
the sense that the difference between the interior
solution and the ‘‘correct’’ solution is relaxed to
zero.

Three test cases were presented in Section 4. The
simple one-dimensional wave radiation problem for
a 3-layer fluid proved to be a fairly stringent test for
many OBCs. Only the Orlanski condition applied to
a normal mode decomposition of the flow and the
FRS solution gave excellent results. The method of
characteristics is acceptable for this problem, while
other methods clearly give inferior results. In particu-

Ž . Ž .Fig. 13. Layer thickness anomaly and current vectors for layer 2 for a wall boundary condition a , the clamped condition b and zero
Ž .gradient c . Contour interval is 2 m. Compare with the reference solution in Fig. 10b. Maximum velocity vector is 0.9 mrs. Numbers along

each axis refer to grid points.
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Ž . Ž . Ž .Fig. 14. As Fig. 13, but for the Camerlengo–O’Brien condition a , method of characteristics b and the FRS c . The 10-point wide FRS
Ž .zones are not shown in c .
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lar, one gets full reflection from the zero gradient
method and the clamped OBC.

For a steady coastal jet, several methods per-
formed very well. Best was the zero gradient method,
followed closely by the extrapolation method and the
sum of the zero gradient and clamped method. Meth-
ods where the phase speed was computed numeri-
cally had problems since wave propagation does not
play a role in the correct solution. The method of
characteristics was better than other schemes based
on the hyperbolic form of the equations, but far from
perfect. The FRS worked only well when relaxed
towards a reasonably correct solution. This, of course,
presents a problem applying this method in general.

The realistic case of a storm crossing a strait had
time-dependent circulation as well as wave genera-
tion. Worst performance was seen for the clamped
and zero gradient conditions. Acceptable results were
obtained with the method of characteristics, while
excellent results were found using Orlanski, Camer-
lengo–O’Brien and the FRS. It should be noted that
increasing the width of the FRS zones improves the
solution in all of the test cases. Using 5 grid points
or less in the relaxation zones gave less satisfactory
performance than cases where 10 points were used.
However, increasing the width of the FRS zones
from 10 to 20 grid points did not improve the results
significantly. For the barotropic models, Martinsen

Ž .and Engedahl 1987 also concluded that the perfor-
mance gets better when increasing the width of the
relaxation zones.

The actual numerical implementation does play a
role in the results presented here. More complicated
schemes such as the method of characteristics can be
computed in different ways on the grid and some
experimentation with the choices showed that it did
influence the performance. Similarly, some smooth-
ing along the boundaries is required for the radiation
conditions. Too much smoothing will degrade the
performance, while too little may result in numerical
instability.

The most important conclusion in Røed and
Ž .Cooper 1987 was that any single OBC scheme did

not prove to be the best in all test cases. This
conclusion can also be made from this study. In the

Ž .Røed and Cooper 1987 study of barotropic models,
the scheme based on the method of characteristics
performed better than the others in general. In our

case, where a projection on vertical normal modes
from a reference basic state was used, this method
was less successful. Computing time- and space-de-
pendent normal modes might improve the method.
However, even in the time- and space-independent,
linearized form used here, the CHA method requires
much larger computational efforts than the simple
schemes.

In terms of robustness, the FRS is superior to
other schemes and is recommended for general use.
Our results suggest that the width of the relaxation
zones should be in the range of 5 to 10 grid points.
However, it is extremely important to emphasize that
knowledge of a reasonably correct solution is re-
quired. The scheme has the advantage that it can be
generalized to include forcing and combine a sponge

Žwith any radiation condition Martinsen and En-
.gedahl, 1987 . The sponge will tend to absorb weak

reflections from an imperfect approximation to the
characteristics, so a fairly simple radiation condition
may be sufficient.
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Appendix A. Vertical normal modes

In order to apply radiation conditions for each
mode separately, we project the solution on vertical
normal modes. For simplicity we assume ErE ys0
in the derivation that follows. We simplify the model

Ž . Ž .equations Eqs. 2 – 10 to the linear shallow water
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equations. In absence of friction, these can be writ-
ten:

EU EFj j
y fV sygH A.1Ž .j 0 j

Et Ex

EVj
q fU s0 A.2Ž .j

Et
jy1N r yrŽ .j i

F sg H yH y H yHŽ . Ž .Ý Ýj i 0 i i 0 i
rjis1 is1

A.3Ž .
EH EUj j

sy A.4Ž .
Et Ex

where the notation is the same as in Section 2.
Ž .We follow the derivation by Lighthill 1969 .

Ž .Partial differentiation of Eq. A.1 with respect to
Ž .time t and using Eq. A.2 gives:

E2U E2Fj j2q f U sygH A.5Ž .j 0 j2 ExEtEt

Ž .Eliminating H using Eq. A.3 yields:j

E2 E2Ui2q f U sgA A.6Ž .j2 2ž /Et Ex

where the N=N matrix A has the elements given
by:

r yrj min j , iŽ .
a s gy H A.7Ž .ji 0 jž /rj

w ŽPlane wave solutions of the form U sUU exp yi k xj j
.xyv t must satisfy the relation:

v 2 y f 2 UU sgk 2a UU A.8Ž .Ž . j ji i

where v is the angular frequency, k is the
wavenumber, and UU is an amplitude.j

We can expand on vertical normal modes by
writing:

N

˜U s a U A.9Ž .Ýj jk k
ks1

where a is component j of eigenvector k of thejk

matrix A. The normal mode amplitudes are com-
puted from:

y1Ũ s a U A.10Ž . Ž .k jk j

Ž .y1where a denotes the inverse of matrix a . Forjk jk
Ž .free waves, the dispersion relation is from Eqs. A.8

Ž .and A.10 :

v 2 y f 2 yghŽn.k 2 s0 A.11Ž .

where hŽn. is the equivalent depth, i.e. an eigenvalue
to A.

Along an open boundary, we compute the ampli-
tude of the normal modes from the transport in each

Ž .layer using Eq. A.10 and apply the OBC to each
mode. The amplitudes for each mode on the bound-

Ž .ary are then transformed back using Eq. A.9 . This
calculation involves two matrix multiplications and
is fairly fast. However, note that the calculation of
these matrices requires finding eigenvalues and
eigenvectors as well as inverting an N=N matrix.
For this reason we use a time- and space-indepen-
dent reference state, so it is only done once. In cases
where the stratification changes with space and time,
the normal mode matrices should in principle be
recalculated during the integration.

Appendix B. Derivation of characteristic open
boundary conditions

Below we will illustrate how the method of char-
Ž .acteristics e.g. Thompson, 1990 can be applied to

an open boundary condition. We will use the linear
shallow water equations on an f-plane:

EU Eh
y fVsygH B.1Ž .0

Et Ex

EV Eh
q fUsygH B.2Ž .0

Et E y

Eh EU EV
sy y B.3Ž .

Et Ex E y

where the notation is given in Section 2. We can
Ž . Ž . Ž .write equations Eqs. B.1 , B.2 and B.3 in matrix

form:

U U U
qA qB qCs0 B.4Ž .V V Vž / ž / ž /h h h yt x
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where the subscript denotes differentiation and the
coefficient matrices A, B and C are given by:

20 0 c
As B.5Ž .0 0 0

1 0 0

0 0 0
2Bs B.6Ž .0 0 c

0 1 0

yfVyF
Cs B.7Ž .fUyG� 00

Each direction will be considered separately. For
the x-direction, we have:

U X U X
qA qC s0 B.8Ž .h hž / ž /

t x

where:

2X 0 cA s B.9Ž .
1 0

and:

yfVyFX
C s B.10Ž .ž /EVrE y

The eigenvalues for AX are "c. We will select a pair
of eigenvectors:

yc cand B.11Ž .ž / ž /1 1

and define a matrix S which consists of these eigen-
vectors and its inverse:

1r2c 1r2c yc y1Ss and S s
1 1 y1r2c 1r2

B.12Ž .

It is easily seen that we can diagonalize A using
these matrices:

c 0y1S ASs sL B.13Ž .
0 yc

y1 Ž .If we apply S to Eq. B.8 we get:

1r2c 1r2 XU y1q LLqS C s0hž /y1r2c y1r2 t

B.14Ž .

where the characteristic vector, LL, is defined as in
Ž .Thompson 1990 , that is:

LL 1r2 Cr21 U
LLLLLs s hž /ž /LL 1r2 yCr2 x2

1r2 UqchŽ . x
s B.15Ž .ž /1r2 UychŽ . x

Ž .After finding the characteristic Eq. B.15 , we now
Ž . Ž .transform Eq. B.14 back by applying S to Eq. B.8

we get. We can write:

U qc LL yLL y fVyFs0 B.16Ž . Ž .t 1 2

h tq LL qLL qV s0 B.17Ž . Ž .1 2 y

At a right boundary, an outgoing wave propagates
Ž .with the velocity qc and an incoming i.e. reflected

wave propagates with the velocity yc. We do not
want a reflected wave, so we set:

1LL s Uych s0 B.18Ž . Ž .x2 2

Ž . Ž .on boundary. Using this in Eqs. B.16 and B.17 ,
we have on the right boundary:

˜EU E
1 Žk . Žk .˜ ˜ ˜sy c Uqc h q fVqF B.19Ž .˜Ž .2

Et Ex

˜Eh E EV˜
1 Žk .˜sy Uqc h y B.20Ž .˜Ž .2

Et Ex E y

ˆwhere F indicates that the amplitude of the vertical
mode k of a variable F rather than the amplitude for
each layer should be used in the stratified case. For a

Ž .left boundary we get equations similar to Eqs. B.19
Ž .and B.20 . In the numerical implementation, we

Ž . Ž .only need Eq. B.19 since the pressure term Eq. 8
can be calculated directly. There are several possibil-

Ž .ities for computing the terms in Eq. B.19 . Best
results were in general obtained when they were
evaluated at time level n and as close to the bound-
ary as possible. On the staggered C-grid, this implies
that the two terms with spatial derivatives are com-
puted at positions one half grid cell apart. When
additional velocity points were added to center this
estimate, a slight improvement in the solution was
observed for outflow conditions, while it deteriorated
for inflow conditions. Since the averaging results in
an upstream estimate for outflow conditions, and a
downstream estimate inflow conditions, this could
perhaps be expected.
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