

Marine Debris Program

Debris Detection: Background, Efforts, & Lessons Learned

Peter Murphy Alaska Coordinator / Detection Lead **NOAA Marine Debris Program**

Outline

- Marine Debris Issue
 - Types
 - Distribution
 - Impacts
- NOAA Marine Debris
 Program
- Detection Efforts
- Overall Detection
 Challenges / Needs

Marine Debris Issue

Debris Types

- Size
- Composition

Debris Distribution

- Shoreline
- At-Sea

Debris Impacts

- Entanglement
- Ingestion
- Habitat Impacts

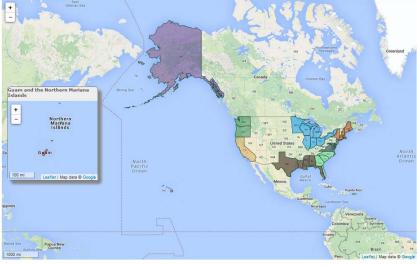
NOAA Marine Debris Program

Facts

- Established in 2005
- Mandated by the Marine Debris Research, Prevention, and Reduction Act, Dec. 2006

Structure

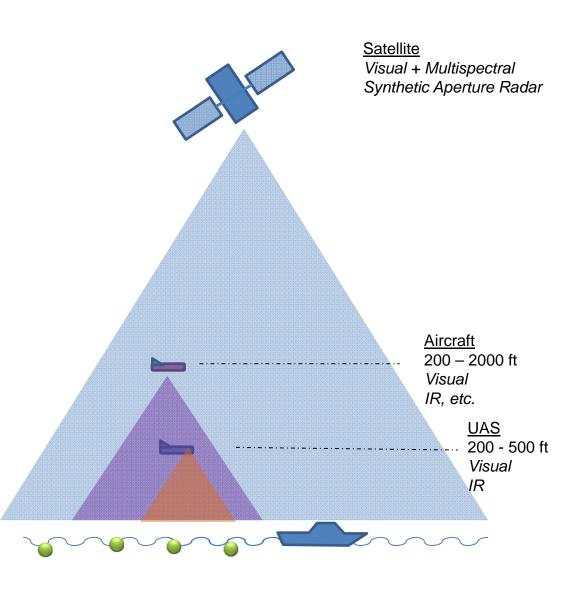
- 15-17 member team
- \$4-6m national budget, historically
- Regional Approach (9 Regions)


Three Pillars

- 1. Research
- 2. Removal
- 3. Prevention

Website:

– http://marinedebris.noaa.gov/



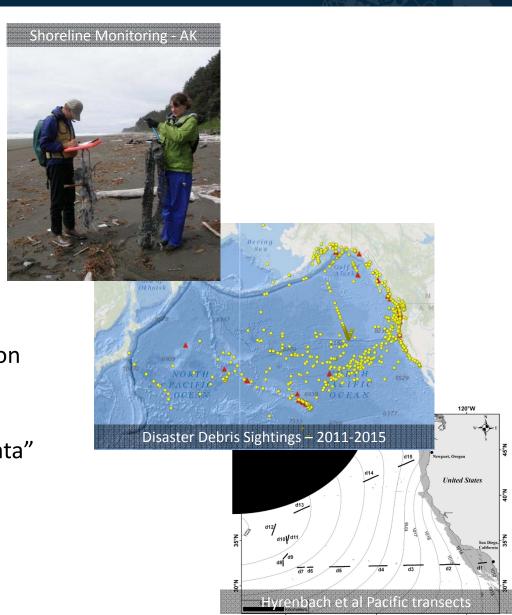
Remote Sensing Workshop - Honolulu - January 19-21, 2016

Detection Efforts

- In-Situ Surveys
 - Shoreline
 - Vessel
- UAS Testing Surveys
- Aerial Surveys
- Satellite Surveys

In-Situ Detection / Surveys

Efforts


- Shoreline Surveys
 - Shoreline Debris Monitoring
 - Opportunistic Reporting
- Vessel Surveys
 - Transect based
 - Active observation
 - Opportunistic Reporting

Pluses / Opportunities

- Direct visual identification
- Ability to return for investigation (shoreline)

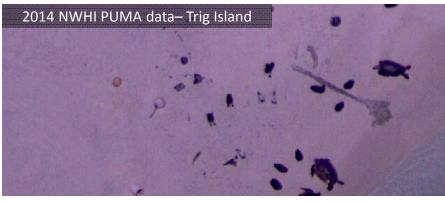
Challenges

- Opportunistic Lack of "null data"
- Monitoring targeted for concentration + composition analysis rather than detection classification

UAS Testing Surveys

Efforts

- 2012 Testing off Haleiwa
- 2013 Shoreline + At-Sea Testing in OCNMS, WA
- 2014+ Testing in NWHI


Pluses / Opportunities

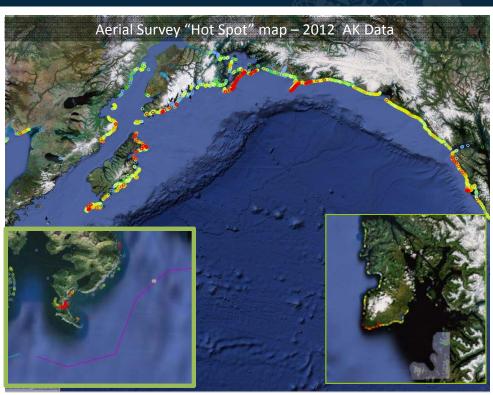
- Access to sensitive or unsafe areas
- Launch/flight from remote areas without fields

Challenges

- Regulatory requirements for operation
- Wide range of systems challenge of choice
- Difficulty of reacquisition of targets
- Imagery resolution (based on system)
- Imagery not always set up for ease or speed of processing
 - Video, non-georectification

Aerial Surveys

Efforts


- Shoreline Aerial Surveys
 - Alaska 2012, 2014, 2015
 - Oblique, qualitative
 - Hawaii 2015 2016
 - Nadir, quantitative
- At-Sea Detection
 - Individual, ad-hoc surveys (USCG C-130, NOAA P3)

Pluses / Opportunities

- Established approach and technology
- Data can be applied to shoreline cleanup prioritization/targeting

Challenges

- Small debris difficult to detect/identify
- Cost of survey and post processing
- Aligning post-processing to immediate and long term data needs

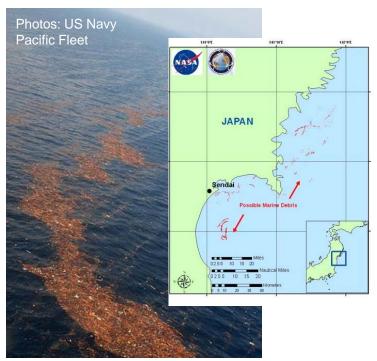
Efforts

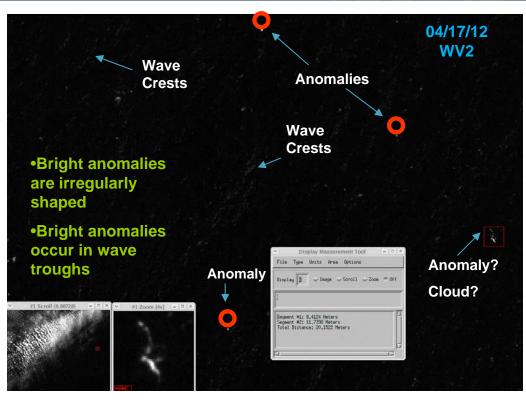
 JTMD Satellite Detection (Led by NOAA NESDIS SAB)

Background

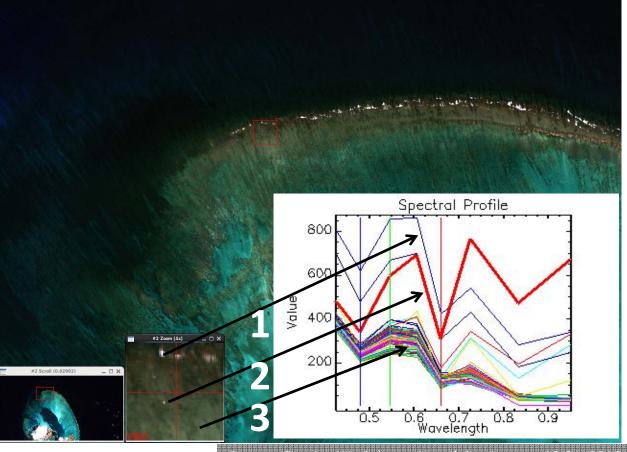
- 2011 Early initiation
 - Disaster Charter
 - Debris Fields
- 2012 Ongoing collection and analysis
- 2014-Present Transition to ongoing analysis and support

Platforms / Sensors


- DigitalGlobe
 - Worldview-2, Worldview-3, Quickbird-2, Ikonos, and GeoEye
- NGA requests through USGS


Platform/ Sensor	World- view 1	World-view 2	World- view 3
Revisit Time	1.7 d	1.1 d	< 1 d
Swath Width	17.7 km	16 km	13.1 km
Multispectral Resolution	n/a	0.46 m	0.31 m
Panchromatic Resolution	0.5 m	1.85 m	1.24 m

Remote Sensing Workshop – Honolulu - January 19-21, 2016



Midway Atoll - August 2015 Worldview 2 Detection in support of

1) Visual analysis

Spectral analysis of suspected debris

debris removal

Remote Sensing Workshop – Honolulu - January 19-21, 2016

- Pluses / Opportunities
 - Coverage Area ability to cover wider area than any other approach
 - Developing Technology –
 Ongoing advancements in sensor and analysis
- Challenges
 - Weather dependency many applicable sensors for MD detection are impacted by cloud or sea-state
 - Resolution limitation –
 common debris size often
 below threshold for reliable
 identification/differentiation
 - Processing Effort Data processing is labor intensive

Overall Detection Challenges/ Needs

- Encounter Rate Debris concentration is often unpredictable and variable, particularly at-sea
- Debris Size Most debris is relatively small (<1m in long dimension, often <0.3m)
- 3. **Debris Visibility** Debris often awash or partially subsurface, reducing target size. Many platforms and sensors are weather dependent.
- **4. Detection v. Identification** Noting the presence of "something" versus identifying what the anomaly is
 - Challenge increases as resolution decreases
- **5. Resolution v. Coverage –** Trade-off between detail of imagery versus coverage of imagery
 - Post-processing is often labor intensive

