Overall Detection Challenges/ Needs

Review / Addition

- 1. Encounter Rate Debris concentration is often unpredictable and variable, particularly at-sea
- 2. Debris Size Most debris is relatively small (<1m in long dimension, often <0.3m)
- **3. Debris Visibility** Debris often awash or partially subsurface, reducing target size. Many platforms and sensors are weather dependent.
- **4. Detection v. Identification** Noting the presence of "something" versus identifying what the anomaly is
 - Challenge increases as resolution decreases
- **5. Resolution v. Coverage –** Trade-off between detail of imagery versus coverage of imagery
 - Post-processing is often labor intensive
- **Cost** Test deployments of sensing platforms, sensing targets, and data processing can be expensive, even with subsidized resources.

Previous Efforts / Resources

JTMD Detection Report – 2015

Focused on detection efforts and lessons learned during the response to debris generated by the tsunami of 2011.

http://marinedebris.noaa.gov/sites/default/files/JTMD_Detection_Report.pdf

At Sea Detection of DFG Workshop - 2008 Outputs of 2008 workshop (pub. 2010), primarily focused on derelict fishing nets, including elements of removal.

http://marinedebris.noaa.gov/proceedings-workshop-sea-detection-and-removal-derelict-fishing-gear

2008 Workshop - Goal Workflow

Overall Goal:

Develop the capability for detection of derelict fishing gear at-sea

Diagram extracted from workshop proceedings, showing conceptual workflow and interrelation between understanding of debris lifecycle, modeling, and eventual detection.

Potential Objective #1

Open Ocean Macro Debris Survey

Ability to reliably detect individual pieces of macro debris at understood profile in terms of size, composition, and environment

- Size 0.X m+ (with iterative improvement)
 - Final threshold dependent on what is a "realistic stretch" for remote sensing community. Potentially 0.5 m
- Location Target areas of known concentration, expanding to broader search as capabilities are proven and better defined in real-world detection.
- Overlap with Efforts Presented at Workshop
 - Many
 - » Satellite detection direct and indirect
 - » Aerial surveys C-130, P3
 - » Visual vessel surveys
 - » Net tows (indicative of debris concentration of low windage objects?)
- Benefits

Potential Objective #2

Shoreline Debris Survey

Ability to provide relative measure of debris concentration on shoreline and/or in nearshore (shallow) environment

- Size 0.2m+ (with iterative improvement) AND/OR relative coverage of debris on shoreline
- Location Target areas of known concentration, expanding to broader search as capabilities are proven and better defined in real-world detection.

Overlap with Efforts Presented at Workshop

- Shoreline aerial survey (AK, HI)
- Shoreline debris identification analysis (BC, Japan)
- Spectroscopy (CA, etc.)

Benefits

- Understanding of relative debris concentration
- Inform/prioritize shoreline cleanups and increase effectiveness
- With approach that counts individual objects → Count and size/frequency distribution data (augmenting shoreline monitoring)