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Atmosphere and ocean conditions
Atmosphere: 

Waves are mostly generated near ground with large range of scales (eg horizontal 
wavelengths from very small to over 1000km).
Propagation upwards, strong mean flow refraction (10 m/s) and density decay 
effects.  Inevitable wave breaking.
Life cycle is nasty, brutish, and short. 
Importance mostly due to wave-induced vertical transport of angular momentum.

Ocean: 
Wave generation at top and bottom, horizontal scale limited to about 150km (ie 
mode 1). 
Propagation upwards and downwards, weaker mean flow refraction (10cm/s), no 
density decay effects.  Eventually intermittent wave breaking.
Life cycle is much longer and interaction effects can add up.   Importance mostly 
due to wave-induced vertical mixing by 3d turbulence during breaking.

 
Simulation in GCMs:

Balanced vortical flow in atmosphere mostly at resolvable synoptic scale 
(1000km), in ocean the same scale (“mesoscale”) is at unresolvable 50km.   Ray 
tracing works poorly in ocean models.  Gravity-wave-permitting vs. eddy-
permitting.

Need to parametrize wave effects is acute in both systems, but  
there are no gw parametrizations in current ocean gcms 
(vertical mixing included by fixed global diffusivity parameter)

There is scope for improvement by comparing experiences in both fields



Rocking like Chapman 2004

Columnar gravity-wave 
parametrizations common in all 
atmospheric GCMs.

No GW parametrizations at all in 
ocean models, just a numerical value 
for a wave-induced vertical 
diffusivity.

Columnar parametrization: 
Parametrization is applied 
independently in each vertical model 
column.  Track pseudomomentum flux.

Bühler, JAS 2003 
Meridional propagation of GWs, 
signature in kinetic and potential 
energy

Bühler & McIntyre, JFM, 2003 + 2005
“Remote recoil” and “wave capture”

Columnar gravity wave parametrization

Parametrization is applied 

independently in each vertical model 

column

Time-dependence is ignored

Vertical wave propagation and 

vertical mean-flow derivatives are 

taken into account

Horizontal wave propagation and 

horizontal mean-flow derivatives are 

ignored: no refraction by mean flow

Many effects are neglected.  Which 

are the important ones?  

Some neglected effects are known to 

be important. 

For instance, intermittency. 



3d ray tracing and wave-mean interaction

Wavepackets along 
group-velocity ray

Amplitude along non-intersecting 
rays is determined by 

wave-action conservation

Wavepackets are the  fundamental 
solutions of ray tracing

Wavetrains can be built from 
wavepackets



3d ray tracing for position and 
wavenumber

phase lines
of a wavepacket

Ω(k,x, t) = U · k + ω̂

dx

dt
= +

∂Ω
∂k

and
dk

dt
= −∂Ω

∂x

ug =
dx

dt
= U + ûg

d
dt

=
∂

∂t
+ (ug · ∇)

Ray time derivative

Group velocity

dki

dt
= −∂Uj

∂xi
kj

Simple case ω̂(k):
Wavenumber changes
due to background 

inhomogeneity
--> refraction



Wave action and pseudomomentum

Wave energy

“Mean” is the average
 over rapidly varying 

wave phase

A =
E

ω̂

p = k APseudomomentum

Wave action

Amplitude prediction from
scalar wave action conservation

Important
 vector wave property:

Pseudomomentum changes with wavenumber 
due to refraction

∂A

∂t
+ ∇ · (Aug) = 0

h = h + h′

h′ = 0

Bretherton & Garrett 1968

E =
1
2

(
H|u′|2 + gh′2

)
Example in shallow water



Understanding wavenumber refraction 

dki

dt
= −∂Uj

∂xi
kj

2 Bühler & McIntyre

1. Ray tracing vs. passive tracer advection
**phase dynamics and advection component discussion **order of magnitude argument

in ray-tracing equations **order of magnitude of growth rate **count the ways standard
wisdom is challenged: turned, **amplified,evaporated pmom **diabatic heating GLM
disclaimer

The standard ray-tracing equations govern the phase and amplitude evolution of a
slowly varying linear wavetrain with slowly varying amplitude a(x, t) and rapidly varying
phase function θ(x, t) such that a typical wave field is given by u′ = u′

0a(x, t) exp(iθ),
with real parts understood. Defining the local wavenumber vector k and frequency ω via

k ≡ +∇θ, ω ≡ −θt (1.1)

the evolution equations for x = (x, y, z) and k = (k, l,m) as functions of time along
group velocity rays are given in terms of the absolute frequency function

Ω(k,x, t) = U · k + ω̂ (1.2)

by Hamilton’s equations

dx

dt
= +

∂Ω
∂k

and
dk

dt
= −∂Ω

∂x
. (1.3)

Here U = (U, V,W ) is the O(1) background velocity field on which the O(a) linear
wavetrain propagates and ω̂ is the intrinsic frequency of the wavetrain, i.e. the wave
frequency after Doppler-shifting to a local frame moving with U . In general, both ω̂ and
U may depend slowly on x and t whilst ω̂ depends on k as well. The local group velocity
ug = (ug, vg, wg) is defined as

ug =
dx

dt
= U + ûg, (1.4)

where the intrinsic group velocity ûg ≡ ∂ω̂/∂k. Clearly, ûg the group velocity in excess
of the advection by the background flow and the time derivative along a ray is equivalent
to the operator

d
dt
≡ ∂

∂t
+ (ug · ∇) =

∂

∂t
+ ((U + ûg) · ∇) (1.5)

acting on slowly varying functions of (x, t).
For simplicity in what follows we will now assume that ω̂ depends on k only, i.e. the

explicit dependence of Ω on x and t is contained entirely in the background flow U(x, t).
Dropping this simplifying assumption if needed is straightforward. The evolution equation
for the wavenumber vector k then becomes

dk

dt
= −∇U · k, (1.6)

where summation is understood and k contracts with U on the right-hand side. This
equation describes the instantaneous change in k = ∇θ due to mean-flow refraction, i.e.
due to the differential advection of the phase lines θ =const. by the background flow
U . This is similar to the evolution equation for the gradient of a passive scalar φ(x, t)
advected by U , i.e.

Dtφ ≡
(

∂

∂t
+ (U · ∇)

)
φ = 0 ⇒ Dt (∇φ) = −∇U · (∇φ). (1.7)

The difference is, of course, that the time derivative along a ray differs from the time
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derivative following a particle:

d
dt
−Dt = (ûg · ∇). (1.8)

So k behaves like the gradient of a passive tracer only to the extent that the difference
between these two time derivatives does not matter. This indicates that under suitable
circumstances the well-studied properties of passive advection can be relevant to disper-
sive wave dynamics. For instance, in the passive advection case it is well known (**) that
|∇φ| can grow exponentially in time (on average) in the Batchelor regime, i.e. if there
is a scale separation the length scale of the advecting flow and the length scale of φ.
Could the same be true for the evolution of k, given that the relevant scale separation is
already implied in the slowly varying wavetrain assumption? This is the basic question
investigated in this paper, and the answer will be crucially dependent on the behaviour
of û as k becomes large. For instance, if |û| decreases as |k| increases (as is the case for
a number of geophysically interesting waves), then the analogy between ray-tracing and
passive advection will become better and better if k is beginning to grow exponentially,
so k can be expected to behave more and more like the gradient of a passively advected
tracer.†

2. Wavenumber straining details
We will study the topic of this paper first in a fairly specific and simplified setting,

whilst making more general comments later**. For large-scale atmospheric flows the most
relevant type of background velocity field is non-divergent and has negligible vertical
component (refs**), i.e.

U = (U, V, 0) and Ux + Vy = 0. (2.1)

The velocity gradient is then

∇U =




Ux Vx 0
Uy Vy 0
Uz Vz 0



 =




α β + γ 0

β − γ −α 0
δ µ 0



 , (2.2)

where {α, β, γ, δ, µ} are functions of time along the ray. In the simplest setting, however,
we neglect the time-dependence of these parameters. This corresponds to a linear layer-
wise non-divergent shear/strain flow U = U0 + αx + (β − γ)y + δz and V = V0 + (β +
γ)x−αy+µz, where (x, y, z) are measured from the starting location of the ray at t = 0.
Notably, even in this simplest case U is not constant along the ray, though ∇U is.

The advantage of (2.2) is that in (1.6) the evolution of the horizontal wavenumber
vector kH = (k, l) decouples from that of the vertical wavenumber m, i.e.

d
dt

(
k
l

)
= −

(
α β + γ

β − γ −α

) (
k
l

)
and

dm

dt
= −δk − µl (2.3)

can be studied in sequence. The evolution of kH is related to the evolution of a material
point moving with the local velocity field (U − U0, V − V0), but with an important
difference. The curl Vx−Uy = 2γ acts equally on both objects: it rotates their components
by γ radians per unit time around the z-axis. However, the strain matrix, which is
determined by Ux = −Vy = α and Uy+Vx = 2β, acts oppositely on (k, l) and the material
point, i.e. the wavenumber vector behaves like the material point with the direction of

† The wave phase θ is not passively advected of course, but moves with the local phase velocity
kω/|k|2. However, for the evolution of k = ∇θ only the gradient of U matters.
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is equivalent to
dk

dt
= −∇U · k

Passive tracer

such that

k and ∇φ evolve similarly

Intrinsic difference

measures the misfit

Dtφ = 0

ug =
dx

dt
= U + ûg

(i.e. wave phase and passive tracer evolve similarly)

Wavenumber



Wavepacket exposed to pure strain in 
analogy with passive advection

Wavepacket is 
squeezed in x and 

stretched in y.
Action is constant

Wavenumber 
vector k is 

increases in size

Pseudomomentum 
p increases as well

p = k A

Wave capture and wave–vortex duality 3

Figure 1. Wavepacket exposed to pure horizontal strain contracting along the x-axis and ex-
tending along the y-axis. The wavecrests align with the extension axis and their spacing is
decreased, so that the wavenumber vector k points at right angles to the extension axis and
grows in magnitude, as suggested by the large arrow.

wavepacket and not just when it is generated and dissipated. These forces and momentum
fluxes are anything but local. In fact, the key to understanding the situation is the same
as the key to understanding what happens to a 2-dimensional vortex pair being pulled
apart by pure strain. Here PH is replaced by the Kelvin hydrodynamical impulse I of
the vortex pair, namely the first moment of the vorticity distribution rotated through a
right angle, i.e. the dipole moment; see (5.3) below. I changes under strain in a manner
closely analogous to the way PH changes for the wavepacket, accompanied by essentially
the same remote-recoil effects.

In developing a general theoretical framework we shall find it convenient, therefore,
to speak of a generalized vortex dynamics involving a wave–vortex duality, implying a
nontrivial extension of standard vortex dynamics for strongly stratified, layerwise-2-dim-
ensional flow. A central result of this paper is that when vortices and wavepackets are both
present they satisfy a conservation theorem for the sum of the PH and I contributions.
Thus, for instance, if a wavepacket is being strained by the velocity field of a nearby
vortex pair, then the resulting changes in its PH are accompanied by compensating
changes in I for the vortex pair. An example of this will be analysed in detail. One may
regard the situation of figure 1 as a formal limiting case in which the background strain is
produced by suitably distributed vortices at infinity. The changing PH of the wavepacket
is accompanied by a remote recoil on the infinitely distant vortices, changing their total
I in compensation.

The wave–vortex duality just indicated stems from the relation between P and the
Kelvin circulation for a general material circuit — see (6.3) below — more specifically the
relation between PH and the Kelvin circulation for material circuits lying on stratification
surfaces. Those relations are most clearly exhibited by the GLM theory, via its exact
definitions of P and PH (Andrews & McIntyre 1978a, hereafter AM78a; also Gjaja & Holm
1996, Bühler 2000, hereafter B00), which directly express the contributions to the Kelvin
circulation from correlations between wave-induced velocity fluctuations and undulations
of the material circuit. In the case of large-scale atmosphere–ocean dynamics the effective
forces associated with PH are therefore related to distributions of Rossby–Ertel potential
vorticity (PV), and to the balanced, vortical part of the velocity field derivable from
PV inversion (e.g. Hoskins et al. 1985, 1987), which to a first approximation is just the
layerwise-nondivergent part. It is important to note, therefore, that there is no reason to
expect there to be such a thing as a PH -associated force straightforwardly acting on the
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Hyperbolic    D>0 Parabolic    D=0 Elliptic    D<0 

Figure 2. Generic contours of horizontal stream function ψ = −αxy + 0.5γ(x2 + y2) with
positive α and γ in principal strain coordinates such that Vx + Uy = 0, D = α2 − γ2.
(For nonzero Vx + Uy and Ux such coordinates are obtained by a rotation through an angle
0.5 arctan((Vx + Uy)/(2Ux)).) Also indicated are captured wavepackets at the orientation of the
growing eigenmode in the first two cases and in that of maximal transient amplification in the
third, elliptic case. The large arrows indicate kH . Left: a hyperbolic case (γ = 0.5α) similar to
that in figure 1 (in which γ = 0). If γ > 0 then the axis of extension is turned counterclockwise
by 0.5 arcsin(γ/α) whilst the axis of contraction is turned clockwise by the same angle. With
increasing γ the strain axes close like a pair of scissors. The advected wavecrests align with the
extension axis; and the growing horizontal wavenumber vector kH , which is always perpendic-
ular to the crests, becomes perpendicular to the extension axis. Middle: the scissors shut in
the parabolic or simple shear case γ = α. Right: an elliptic case (γ = 1.5α). The ellipses have
aspect ratio

p
(γ + α)/(γ − α), which equals the maximum transient amplification factor for

|kH(t)|.

sign of the irrotational strain reversed. This is a consequence of k being the gradient of
a scalar, Θ; in modern geometric language, k is a 1-form rather than a 1-vector.

Most important for our purposes is the long-time behaviour of kH(t), which is governed
by the exponential stretching rates given by the matrix eigenvalues ±

√
D, where D is

the determinant U2
x + VxUy, i.e.

D = U2
x +

(
Vx + Uy

2

)2

−
(

Vx − Uy

2

)2

. (3.8)

Note that a nonzero curl always diminishes the stretching rate. As illustrated in figure 2a,
if D > 0 then the streamlines are hyperbolic and there is a wavenumber eigenmode that
grows exponentially in time (J69) with stretching rate

√
D. The growing eigenmode is ex-

cited by almost all initial conditions; asymptotically kH(t) ∝ (−Vx, Ux+
√

D) exp(
√

D t).
This is the case of wave capture.

If D = 0 (figure 2b) then the flow is a parallel shear flow with a linearly growing
wavenumber, such that asymptotically kH(t) ∝ (−Vx, Ux) |Vx − Uy| t, i.e. classical
critical-layer behaviour. If D < 0 (figure 2c) then the streamlines are closed ellipses,
implying that the wavenumber evolution is bounded, though temporary amplification
can still occur, up to a factor equal to the aspect ratio of the ellipse. For D ! 0 and
for almost all initial kH(0), the asymptotic orientation and growth rate of kH depend
solely on ∇U . In other words, we have a robust behaviour in which the wavenumber
vector of a captured wavepacket forgets about the initial conditions at large time, and
asymptotically points in a direction determined by the local velocity gradient alone.

We now consider the evolution of the vertical wavenumber m in the case D > 0, which
features exponential growth of kH and therefore κ, with stretching rate

√
D. Turning

to (3.7b) we see that m will also exhibit exponential growth at large time, unless it so
happens that the right-hand side of (3.7b) is zero for the growing eigenmode in horizontal

The horizontal wavenumber vector aligns itself with the growing 
eigenvector, which is  perpendicular to the extension axis 

Pseudomomentum of the wavepacket changes
Grows exponentially in long run 

Jones 1969, Badulin & Shira 1993, B&M 03,05
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The horizontal wavenumber vector aligns itself with the growing 
eigenvector, which is  perpendicular to the extension axis 

Pseudomomentum of the wavepacket changes
Grows exponentially in long run 

Jones 1969, Badulin & Shira 1993, B&M 03,05



Numerical example
Plougonven & Snyder
GRL, 2005

Figure 4. Horizontal and vertical cross-sections of the
horizontal divergence at lower (dx = 100km, dz = 500m,
upper panel) and higher (dx = 25km, dz = 125m lower
panel) resolution, to be compared with the middle pan-
els of Fig. 2 and 3. (Contrary to Fig. 2, the arrows
here show the wind field in the referential moving with
the baroclinic wave, in order to highlight the stagnation
point and the dilatation axis.) In agreement with sec-
tion 2, the wavelengths decrease as resolution increases.
Moreover, the high-resolution simulation clearly shows
the wavelengths decreasing spatially as the waves ap-
proach the dilatation axis.

Snapshots taken from 
numerical simulation of 
meandering jet stream

Interpreted based on wave 
straining 

Back-reaction on the mean flow?



Remote recoil

counter-clockwise
vortex

A wavepacket can exchange 
momentum with a vortex 
without dissipating

Add a background vortex

Bühler & McIntyre, JFM 03



counter-clockwise 
vortex

Vortex-pair refraction

clockwise vortex

stagnation 
pointfixed wavepacket 

at t1     
drifting wavepacket 

at  t2>t1      

ug(t1) = 0 ug(t2) > 0
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Figure 2. Contours

side-steps complications due to the possible divergence or non-uniqueness of global hori-
zontal momentum integrals for layerwise non-divergent flows on horizontal surfaces (e.g.
BatchBook §7.3**; also BM03**). Kelvin’s impulse, on the other hand, is unambiguously
defined for compact vorticity distributions and we define it for Q

L as

I(z, t) ≡
∫ ∫

(y,−x) Q
L dxdy, (5.11)

where the integral is taken over all of (x, y) at constant (z, t). In the absence of waves
(5.3-5.4) imply that I is constant for ideal flow. In the presence of waves I evolves
according to

∂I
∂t

= −
{

∂

∂t

∫ ∫
pH dxdy +

∂

∂z

∫ ∫
(pHŵg) dxdy

}
, (5.12)

where pH denotes the horizontal part of p and it has been assumed that pH has compact
support on horizontal surfaces. The latter allows the identity

∫ ∫
pH dxdy =

∫ ∫
(y,−x) (ẑ · ∇× p) dxdy (5.13)

to hold trivially and (5.12) then follows directly from (5.4) and (5.9).
Together with (5.7) the impulse budget (5.12) shows that the rate of change of I is

equal to minus the generation rate of pH due to mean-flow refraction. In Bretherton’s
case there was no mean-flow refraction and hence I was constant (and equal to zero).
In the general case of vortical mean-flow structures that refract the wavepacket (5.12)
shows that the net gain in pH is precisely accounted for by minus the concomitant change
in mean-flow impulse I. The simplest thought experiment considers a steady wavetrain
subject to mean-flow refraction, which leads to non-constant vertical flux of horizontal
pseudomomentum. The convergence of this vertical flux at a given z is then precisely
equal to minus the rate of change of I at that altitude.

Another thought experiment considers a single wavepacket undergoing capture. During
capture pH grows exponentially and (5.12) shows this is also true for I, with opposite
sign. This means that there is an exponentially growing mean-flow response that mani-
fests itself in an re-arrangement of Q

L on horizontal surfaces. Of course, the above regular
perturbation analysis is valid only for times t = O(1) and hence the resultant mean-flow
changes are formally bounded by O(a2). However, one can hypothesize that the above

p = k APseudomomentum



counter-clockwise 
vortex

Vortex-pair refraction

clockwise vortex

stagnation 
pointfixed wavepacket 

at t1     
drifting wavepacket 

at  t2>t1      

ug(t1) = 0 ug(t2) > 0

10 Bühler & McIntyre

Figure 2. Contours

side-steps complications due to the possible divergence or non-uniqueness of global hori-
zontal momentum integrals for layerwise non-divergent flows on horizontal surfaces (e.g.
BatchBook §7.3**; also BM03**). Kelvin’s impulse, on the other hand, is unambiguously
defined for compact vorticity distributions and we define it for Q

L as

I(z, t) ≡
∫ ∫

(y,−x) Q
L dxdy, (5.11)

where the integral is taken over all of (x, y) at constant (z, t). In the absence of waves
(5.3-5.4) imply that I is constant for ideal flow. In the presence of waves I evolves
according to

∂I
∂t

= −
{

∂

∂t

∫ ∫
pH dxdy +

∂

∂z

∫ ∫
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∫ ∫
pH dxdy =

∫ ∫
(y,−x) (ẑ · ∇× p) dxdy (5.13)

to hold trivially and (5.12) then follows directly from (5.4) and (5.9).
Together with (5.7) the impulse budget (5.12) shows that the rate of change of I is

equal to minus the generation rate of pH due to mean-flow refraction. In Bretherton’s
case there was no mean-flow refraction and hence I was constant (and equal to zero).
In the general case of vortical mean-flow structures that refract the wavepacket (5.12)
shows that the net gain in pH is precisely accounted for by minus the concomitant change
in mean-flow impulse I. The simplest thought experiment considers a steady wavetrain
subject to mean-flow refraction, which leads to non-constant vertical flux of horizontal
pseudomomentum. The convergence of this vertical flux at a given z is then precisely
equal to minus the rate of change of I at that altitude.

Another thought experiment considers a single wavepacket undergoing capture. During
capture pH grows exponentially and (5.12) shows this is also true for I, with opposite
sign. This means that there is an exponentially growing mean-flow response that mani-
fests itself in an re-arrangement of Q

L on horizontal surfaces. Of course, the above regular
perturbation analysis is valid only for times t = O(1) and hence the resultant mean-flow
changes are formally bounded by O(a2). However, one can hypothesize that the above

p = k APseudomomentum

Pseudomomentum grows as wavepacket is compressed
Exchange of pmom and impulse, what about energy?
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(y,−x) (ẑ · ∇× p) dxdy (5.13)

to hold trivially and (5.12) then follows directly from (5.4) and (5.9).
Together with (5.7) the impulse budget (5.12) shows that the rate of change of I is

equal to minus the generation rate of pH due to mean-flow refraction. In Bretherton’s
case there was no mean-flow refraction and hence I was constant (and equal to zero).
In the general case of vortical mean-flow structures that refract the wavepacket (5.12)
shows that the net gain in pH is precisely accounted for by minus the concomitant change
in mean-flow impulse I. The simplest thought experiment considers a steady wavetrain
subject to mean-flow refraction, which leads to non-constant vertical flux of horizontal
pseudomomentum. The convergence of this vertical flux at a given z is then precisely
equal to minus the rate of change of I at that altitude.

Another thought experiment considers a single wavepacket undergoing capture. During
capture pH grows exponentially and (5.12) shows this is also true for I, with opposite
sign. This means that there is an exponentially growing mean-flow response that mani-
fests itself in an re-arrangement of Q

L on horizontal surfaces. Of course, the above regular
perturbation analysis is valid only for times t = O(1) and hence the resultant mean-flow
changes are formally bounded by O(a2). However, one can hypothesize that the above

d

dt

∫
E

ω̂
dxdy = 0

dω̂

dt
=

√
gH

d|k|
dt

> 0

d

dt

∫
E dxdy > 0

Action conservation Refraction

Energy transfer:
Wave-vortex energy 

transfer 
Also wave-wave 

transfer as scale 
changes

Bühler & McIntyre, 2005



Meanwhile in the ocean 

locity–buoyancy coherence is not statistically different
from zero (Fig. 11). The restricted set of diagnostics are

Renergy !
Ek

Ep
" 5.0,

Rrotary ! Ecw!Eccw " 5.2,

"n " 1.20 rad,

# " 7.70 # 0.08 $ 10%5s%1 " &1.13 # 0.01'f.

The major axis lies in the north-northwest/south-
southeast direction.

Taking these estimates at face value and interpreting
them in terms of a single wave yields

$

f
"!Ek ( Ep

Ek % Ep
" 1.22,

|k|
|l| &%& " 320 m' " 0.39.

FIG. 10. A map of the 500-m geostrophic streamfunction (McWilliams 1976; Lee and Wunsch
1977) from MODE, day 165, 1973 (14 Jun, # 3 days), with a schematic depiction of wave crests
(thick solid lines at approximately one horizontal wavelength separation) and wavevector (the
arrow) associated with the coherent features noted in data reported by Sanford (1975) and
Leaman and Sanford (1975) and reanalyzed here. The streamfunction map indicates a strain-
ing feature immediately to the north of the experimental site (28°N, 69°40)W, with data taken
over 11–15 Jun, a time frame that includes day 165). In the shrinking catastrophe and wave
capture scenarios, this strain will preferentially orient wave fronts and cascade wave phase to
higher horizontal wavenumber. The orientation of the wave phase in the horizontal and
vertical is consistent with the Bühler and McIntyre (2005) wave-capture scenario for a wave
propagating downward in the southward surface-intensified jet. Also depicted is the dipole
structure (Bühler and McIntyre 2005) associated with the wave packet and its circulation.
Note that this vorticity signature opposes that associated with the mesoscale field: potential
vorticity contours differ from the geostrophic streamfunction contours only in the advection
of relative vorticity (McWilliams 1976). High and low pressure centers are associated with
negative and positive relative vorticity, respectively. Bühler and McIntyre (2005) forward the
hypothesis that the dipole becomes locked into the mean flow as the internal wave dissipates.
Thus, wave capture provides a mechanism for mixing potential vorticity.
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Fig 10 live 4/C

Polzin JPO 2008 data re-analysis of the Mid-Ocean Dynamics Experiment looks 
at fits with wave capture caused by mesoscale vortices

Could provides an energy sink mechanism for the mesoscale vortical flow
but there really is no spatial scale separation for these flows.  

Ray tracing is not enough. 



3d refraction in the atmosphere

Gravity Wave Refraction by Three-Dimensionally Varying Winds and the
Global Transport of Angular Momentum

ALEXANDER HASHA AND OLIVER BÜHLER

Courant Institute of Mathematical Sciences, New York, New York

JOHN SCINOCCA

Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

(Manuscript received 11 July 2007, in final form 8 January 2008)

ABSTRACT

Operational gravity wave parameterization schemes in GCMs are columnar; that is, they are based on a
ray-tracing model for gravity wave propagation that neglects horizontal propagation as well as refraction by
horizontally inhomogeneous basic flows. Despite the enormous conceptual and numerical simplifications
that these approximations provide, it has never been clearly established whether horizontal propagation and
refraction are indeed negligible for atmospheric climate dynamics. In this study, a three-dimensional ray-
tracing scheme for internal gravity waves that allows wave refraction and horizontal propagation in spheri-
cal geometry is formulated. Various issues to do with three-dimensional wave dynamics and wave–mean
interactions are discussed, and then the scheme is applied to offline computations using GCM data and
launch spectra provided by an operational columnar gravity wave parameterization scheme for topographic
waves. This allows for side-by-side testing and evaluation of momentum fluxes in the new scheme against
those of the parameterization scheme. In particular, the wave-induced vertical flux of angular momentum
is computed and compared with the predictions of the columnar parameterization scheme. Consistent with
a scaling argument, significant changes in the angular momentum flux due to three-dimensional refraction
and horizontal propagation are confined to waves near the inertial frequency.

1. Introduction

In columnar ray-tracing schemes both the horizontal
location as well as the horizontal wavenumber vector
are constant along a ray. In addition, for a steady non-
dissipative wave train the net vertical flux of horizontal
pseudomomentum is constant along a ray tube. Be-
cause the vertical flux of horizontal pseudomomentum
equals the wave-induced vertical flux of mean horizon-
tal momentum (e.g., Andrews and McIntyre 1978, sec-
tion 5.2), this leads to the standard paradigm of colum-
nar wave–mean interaction, which is the “pseudomo-
mentum rule.” According to this rule persistent,
cumulative forcing of the mean flow occurs only where

waves dissipate and then the mean force is equal to the
rate of dissipation of the horizontal pseudomomentum.

Columnar parameterization schemes for gravity
waves (or other processes) offer enormous conceptual
and numerical simplifications, the latter being of par-
ticular importance for the current generation of highly
parallelized GCMs. Nevertheless, it has never been
clearly established whether horizontal propagation and
refraction are, indeed, negligible for atmospheric cli-
mate dynamics. This is an interesting question not only
for parameterization efforts but also for understanding
the dynamics of explicit gravity waves that are increas-
ingly produced and observed in high-resolution GCMs
(e.g., Plougonven and Snyder 2005). Such explicitly re-
solved waves may also affect data assimilation proce-
dures.

The present study makes a step toward estimating
how three-dimensional refraction of internal gravity
waves affects the global vertical transport of angular
momentum. To this end, we built an offline ray-tracing
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Direct ray tracing tests
Part of PhD project Alex Hasha

As part of Alex’s thesis we sought to adapt an existing ray-
tracing scheme (GROGRAT) for atmospheric internal waves to test 
the impact  of 3d refraction on the net wave-induced transport of 
angular momentum into the middle atmosphere 

This turned out to 
be harder than we 
thought.... 

Ray tracing on a 
sphere is hard...

For instance, in a 
still, non-rotating 
atmosphere

waves should travel 
on great circles

first attempt



Low-frequency wave: strong effect

critical layer at 40km
in column scheme never moves more than 

0.6km in the vertical

angular pmom fixed

angular pmom 
fluctuates by factor 
10, changes sign

signals significant 
interaction with mean 
flow

omega = 2f



High-frequency wave: weak effect

Eastward track launched at z=20km
over NYC in winter

horizontal wavelength 59km 

vertical wavelength   20km

period                16mins
horizontal 
propagation well 
within a grid box

omega = N/2

For topographic waves the 3d effects are 
slight, tested with GCM.

Strong effects require near-inertial waves



The complete ocean circulation, abridged
Schmitz 1996

Momentum budget wide open 
by side walls except in 
ACC.  Waves less important.

Waves believed crucial for 
vertical mixing (no 
diabatic heating in the 
ocean)



Wave-induced diffusivity in the deep 
ocean

Figure 1: Potential density (σ) distribution in a section of the Pacific Ocean stretching from
Antarctica (south) to the Aleutians (north). Isosurfaces are labelled by the (σ − 1000) ×
103/kgm−3, in increments ranging from 0.20 in the thermocline to 0.02 in the ocean abyss.
The black corrugations are the ocean bed. (Figure taken from [16]).

hundreds of metres thick above rough or steepening regions of the ocean floor [7, 11, 13].
These mixing zones extend far beyond the turbulent boundary layer of ocean in immediate
contact with the bed, signalling that the anomalous diffusion is a non-local effect: that
fluid driven over the ocean floor in tidal flow, mesoscale eddies or else wave-driven currents
generates internal waves which break at some distance from the ocean floor and in so doing
mix up the local density field.

1.2 A universal spectrum of internal waves

The oceans are never silent, but resound with internal inertio-gravity waves at all length-
scales. Compared to the energies and velocities associated with the ever-present wave field,
the currents that are conventionally thought to control the global transport of temperature
and salinity are in many places rather feeble. Studies by Garrett and Munk in the 1970s,
culminating in [4], showed that data collected from moored, towed and dropped sensor
studies of the spectrum of waves within the ocean can be united into a single common
spectrum. There are various equivalent ways for casting the spectrum (see Section 2), but
one common form is in terms of the horizontal and vertical wavenumbers m and kH :

E(kH ,m) =
3fNE∗m/m∗

π(1 + m/m∗)5/2(N2k2
H + f2m2)

(2)

where N is the buoyancy frequency, and f the frequency of purely inertial waves, and
the significance of these two parameters will be discussed in Section 2. The wave-field is

2

Large-scale overturning circulation 
advects particles in the meridional 
plane

Density surfaces should overturn in 
the meridional plane

Apparently, this does not happen at 
the right rate and therefore there 
must be density diffusion 
(“diapycnal diffusion”) of 
sufficient magnitude 

Small-scale gravity waves are 
believed to play a significant role 
here: wave-breaking induces mixing 
and diffusion   Couples the very small to 

the very large



Microstructure measurements

Clear evidence of enhanced 
turbulence above rough 
topography

58
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Figure 4. Turbulent diapycnal eddy
diffusivity K in the Brazil Basin
shows weak mixing (less than 0.1 x
10-5 m2 s-1) over the smooth topogra-
phy to the west and bottom-elevated
mixing (K > 10 x 10 -5 m2 s-1) over the
rougher topography of the Mid-
Atlantic Ridge to the east (adapted
from Mauritzen et al. 2002). 
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Figure 5. Measurements of sea-surface elevation from satellite altimetry have led to direct estimates of the loss of energy from
the surface tide. Until recently, this loss was thought to occur principly in shallow waters. Satellite altimetry and numerical
simulations have revealed that up to a third happens in the deep ocean, the surface tide losing energy to the generation of inter-
nal tides and local turbulence with the former sink thought to dominate. Surface lunar semidiurnal (M2) tidal dissipation
inferred from a least-squares fit of satellite altimetry data to the barotropic tide equations are shown (from Egbert and Ray,
2001). Large dissipations or sinks to the surface tide (red) are collocated with regions of steep topography such as the Hawaiian
Ridge and the Micronesian Archipelago. Large internal tides have been observed radiating from these same topographic fea-
tures, generated by tide/topography interactions.

Polzin et al. 1997
The plot that launched a 1000 ships



Internal tides are internal waves generated by the flow of the barotropic tide 
over the undulating sea-floor

Mathematical model with ocean at rest, bottom topography moving back and forth 
with barotropic tidal frequency and excursion amplitude 100-200 metres

Dominant internal tides at tidal frequency
Sub-dominant modes at higher harmonics



Internal tide  

Barotropic tide (eg M2) rubs over undulating sea-floor topography
Internal waves are generated: “internal tides”
Breaking and dissipation of unstable internal tides provides deep-ocean mixing  
Mixing efficiency contingent on spatial distribution of mixing: boundary vs interior

Typically all studies linear, no downslope windstorms knowledge used...

Subtle linear problem in 
general due to time-
dependent Doppler 
shifting

Easy for small or large 
tidal excursion parameter

U0k

ω0
! 1



Three-dimensional internal tide
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3d line focusing

Real part 
interior of cone 
peaked near front-

a = 0.7 b = 0.5 σ = 0.05
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Saturation of internal tide

4. Tidal mixing over random topography

a. Random topography and bottom energy flux

Our knowledge of the seafloor is rather poor, espe-
cially at scales below 40 km or so (Smith and Sandwell
1997), which leads us to take a statistical approach. We
use the simplest model for the topography, namely, a
random Gaussian field. We are not aware of specific
evidence whether small-scale seafloor topography can
be modeled as a Gaussian field, but Gaussian fields are
certainly a convenient starting point. Importantly, inter-
nal tides forced byGaussian topographies are themselves
a three-dimensional Gaussian random field, which makes
all the standard tools available for their study.
We use the simple topography spectrum proposed by

Bell (1975b) (see alsoMüller andXu 1992). This spectrum
is isotropic with a power law such that the variance of h is

E(h2)5 (125 m)2
ðk2

0

k1k

(k2 1 k21)
3/2 dk, (13)

with parameters (k1, k2)5 (2p/40 km, 2p/400 m), where
E denotes the expected value. The cutoff parameter
k2 regulates the slope varianceE(j$hj2)5 (125m)2k1k2’
(0.2)2. Using Bell’s spectrum and our assumption that the
topography is a random Gaussian field, we can generate

samples of the topography. Note that there is no tunable
parameter in the generation of the topography.
There are other statistical representations of the sea-

floor. Goff and Jordan (1988) have proposed an aniso-
tropic spectrum with five parameters that can be tuned
to best match the available data in a region.Wewill look
in detail at a region near the Mid-Atlantic Ridge in
section 5, so we could use their spectrum with the pa-
rameters from their Atlantic data. Nevertheless, the
Atlantic region is the area where their model does most
poorly. Becker and Sandwell (2008) have also been
working on a global map of seafloor slope. In this paper,
we will focus on simple isotropic spectra.
We model the barotropic tide with the unidirectional

velocityU(t)5 (U0 cosv0t, 0, 0), with semidiurnal values
U0 5 4 cm s21, and v0 5 1.4 3 1024 s21. When the
barotropic tide U(t) flows over this topography, internal
tides are radiated with energy flux given by (7). The en-
ergy flux of the saturated wave field is computed at z5 0
for various saturation lengths Ls and is shown in Fig. 3.1

FIG. 2. Buoyancy surfaces with saturation.

1 In this section, the computations are done with a 200 km by
200 km domain, with 1024 grid points in both horizontal directions,
and typical vertical resolution dz 5 10 m. This high horizontal res-
olution ensures that the wide range of scales of Bell’s topography
spectrum is well resolved.We use values f5 v0/2 at a latitude of 308,
and the representative near bottom buoyancy frequency N 5 10f.
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Saturation of linear waves using 
convective instability as criterion.

Works in real space, no plane waves 
here!  

Resultant energy flux convergence can 
be converted into vertical mixing 
profile

significantly to the solution. Remember that A is real at
z 5 0 from the boundary condition in (8), so

A5Ar 1 iAi, Âr 5 Â0 cos(kmz),

Âi 5 Â0 sin(kmz)5 0 at z5 0

(see scatterplots Fig. 6). At z 5 35 m, the bottom
boundary condition is forgotten and jAsatj reaches a lo-
cal maximum (Fig. 7), which corresponds to a peak in
the saturation and in the energy dissipation !. We should
point out here that, in the real ocean, there are many
other processes near the bottom that we have ignored,
such as boundary layer effects. Our computation isolates
the effect of tides, and in reality we do not expect the
diffusivity to be zero at the seafloor.
We note in passing that the amplitude of the waves

based on shear instability (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2z 1 y2z

p
/N) has a similar

vertical profile as our amplitude based on convective
instability, with a local maximum near z 5 35 m. De-
pending on the critical Richardson number used, shear
instabilities are either negligible (Ricrit 5 1/4) or yield
similar profiles (Ricrit 5 1) as convective instabilities.
Also, we have checked that our results do not depend on
the vertical resolution by varying the vertical step size
dz; for instance, we computed the vertical profile of

diffusivity when the vertical step size is increased from
10 to 25m (Fig. 8). There is a slight loss of detail near the
bottom because of the lower resolution, but overall the
profiles are very similar, which gives us confidence that
our results do not depend on the vertical resolution.
Despite the simplicity of our model, we find a profile

of diffusivity in good agreement with oceanic measure-
ments, decreasing from O(10 cm2 s21) to O(1 cm2 s21)
within 600 m, and then to its background value of
0.1 cm2 s21 higher up in thewater column, as ismost easily
seen on a logarithmic plot in Fig. 5 (see, e.g., Polzin et al.
1997 for measurements of vertical diffusivity above the
Mid-Atlantic Ridge). An interesting finding is that the
tidal mixing could be more confined to the bottom than
previously assumed. Indeed, previous parameterizations
used exponential decay of diffusivity from the bottom
with a decay scale of 500 m (e.g., St. Laurent et al. 2002;
Simmons et al. 2004; Saenko and Merryfield 2005;
Canuto et al. 2009, manuscript submitted to Ocean
Modell.), but we find that near the bottom diffusivity
decays with height faster than exponential. Even if we
decrease the decay scale to 300 m, the agreement is not
greatly improved. Beyond 2 km, this statement is re-
versed and diffusivity decays slower than exponential.
Furthermore, the current consensus seems to be that

most of the energy flux radiates away as low modes, but

FIG. 4. Energy flux and implied mixing above random topography.
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This calculation is repeated for many 
statistical topography samples and 
then averaged to obtain the expected 
diffusivity profile 

Muller & Bühler JPO 2009



Internal tide 
spreading through 
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Simmons, Hallberg, Arbic 2004 two-layer 
model

Recent work with 
Miranda Holmes-Cerfon:

what limits the propagation of the 
internal tide?

Scale cascade limits the life time 
of low mode tides



How far can mode-1 tide propagate?

ψ = sin
(zπ

H

)
cos(kx− ωt)

e.g. M2 tide

This is important for 
interactions with the mean flow
(e.g. the barotropic tide)

Basic fact of wave-mean 
interaction theory:

the mean flow feels topographic 
waves not where there are 
generated but where they are 
dissipated

Bühler 2009
C.U.P.
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Paper in press, Feb 11

Under consideration for publication in J. Fluid Mech. 1

Decay of an internal tide due to random
topography in the ocean

By OLIVER BÜHLER †
AND MIRANDA HOLMES–CERFON ‡

Center for Atmosphere Ocean Science at the Courant Institute of Mathematical Sciences
New York University, New York, NY 10012, USA

(Received 5 February 2011)

We present a theoretical and numerical study of the decay of an internal wave caused
by scattering at undulating sea-floor topography, with an eye towards building a simple
model in which the decay of internal tides in the ocean can be estimated. As is well
known, the interactions of internal waves with irregular boundary shapes lead to a math-
ematically ill-posed problem, so care needs to be taken to extract meaningful information
from this problem. Here, we restrict the problem to two spatial dimensions and build a
numerical tool that combines a real-space computation based on the characteristics of
the underlying PDE with a spectral computation that satisfies the relevant radiation con-
ditions. Our tool works for finite-amplitude topography but is restricted to sub-critical
topography slopes.

Detailed results are presented for the decay of the gravest vertical internal wave mode
as it encounters finite stretches of either sinusoidal topography or of random topography
defined as a Gaussian random process with a simple power spectrum. A number of scaling
laws are identified and a simple expression for the decay rate in terms of the power
spectrum is given. Finally, the resulting formulas are applied to an idealized model of
sea-floor topography in the ocean, which seems to indicate that this scattering process
can provide a rapid decay mechanism for internal tides. However, the present results are
restricted to two spatial dimensions and to uniform stratification, which restricts their
direct application to the real ocean.

1. Introduction
1.1. Internal tides in the ocean

Internal gravity waves are an essential component of the dynamics of the ocean. Not
only are they the most energetic form of fluid motion at small scales, but they also
provide an important contribution to small-scale mixing, especially in the vertical, via
the three-dimensional turbulence that is induced in localized regions where the waves are
unstable and break. Broadly speaking, such turbulent vertical mixing across the stable
stratification surfaces of constant density, say, is vital for the functioning of a global ocean
overturning circulation, in which particles must be allowed to cross these density surfaces.
It is believed that the breaking of small-scale internal waves in the ocean interior, together
with cross-stratification mixing at outcropping stratification surfaces at the ocean surface

† Author to whom correspondence should be addressed.
‡ Current address: School of Engineering and Applied Sciences, Harvard University, Cam-

bridge, MA 02138, USA



Problem set-up, 2d
Problem setup

x

z z=h(x)

z=H

ψ
ψ = 0

ψ = 0

Problem
Random topography h(x) (Gaussian)
Linear internal wave equation

(N2 + ∂tt)∂xxψ + (∂tt + f 2)∂zzψ = 0

ψ = streamfunction, s.t. u = ∂zψ, w = −∂xψ.
Boundary conditions

Top, bottom: ψ = 0 at z = H, z = h(x)
Prescribed incoming waves at x = −∞
Radiation condition: no other incoming waves at x = ±∞

rotation included



Spatial mode structureEquations

Look at fixed frequency ω: ψ(x , z , t) = Ψ(x , z)e−iωt .

z =
H

π
z ′, x =

1

µ

H

π
x ′, µ =

√
ω2 − f 2

N2 − ω2

Slope of wave rays,
∼ 0.2 for tidal modes.

Non-dimensional equation

Ψxx −Ψzz = 0

Form of solution

Ψ = f (ξ) + g(η),

ξ = x + z−π, η = x− z−π.

b.c. Ψ = 0 at z = π ⇒
g(ξ) = −f (ξ)

Remains to determine:
1 function f (ξ)
2 characteristic map x0 → x1.



Solution by method of characteristics

Solution

Ψ = f (ξ)− f (η), ξ = x + z − π, η = x − z − π.

x

z z=h(x)

z=!
x
0

x
1

("
r
,#
r
)

ξ is constant on incoming ray

f (ηr ) = f (ξr ) = f (ξ0)

η is constant on reflected ray

f (ξ1) = f (η1) = f (ηr ) = f (ξ0)

x0 = ξ0, x1 = ξ1

⇒ f (x0) = f (x1)

Solution along characteristics

Ill-posed problem for the spatial 
structure of time-periodic 
internal waves in a bounded domain

First pointed out by 
Sobolev 1930s in connection with 
research into rotating fuel tanks

Wunsch 1960s

Maas et al 1990s



Weaving a tangled webSolve for map r(x)

x

z z=h(x)

z=π
x

0

x
1
=         

x
0
+2π+2∆(x

0
)

x
0
+π+∆(x

0
)

∆

x
0
+2π

One bounce: x → r1(x) = x + 2π + 2∆(x)
Where ∆(x) solves

h(π + x + ∆(x)) + ∆(x) = 0

|h|" 1 =⇒ ∆(x) = −h(x + π) + O(|h|2)

=⇒ ∆(x)
d
= −h(x)

Many bounces: rn+1(x) = rn(x) + 2∆n(rn(x))



Solution by Fourier series

Map r(x) : [0, 2π]→ [0, 2π] + L
f (r(x)) = f (x),

f (r−1(x)) = f (x)

“Naive” solution f
i
(ξ)=a

1
eiξ f

n
(ξ)=Σ

k=−∞
∞  a

k

(n)eikξ

True solution

f
i
(ξ)=a

1
eiξ

f
r
(ξ)=Σ

k=0

∞  a
k

−e−ikξ

f
t
(ξ)=Σ

k=1

∞  a
k

+eikξ

Transmission + Reflection



Periodic topography  non-resonant

Topography wavenumber =  1.5



Periodic topography  resonant

Topography wavenumber =  1.0



Periodic topography  resonant

Topography wavenumber =  2.0



Mode-1 periodic topographyPeriodic Topography
(with Erinna Chen, Neil Balmforth, GFD summer program)

h(x) = 1
2 cos x

rn+1(x) = rn(x) + 2∆(rn(x)) ≈ rn(x)− 2h(rn(x))

Continuous approximation

ẋ = F (x), F (x) = −2h(x)

Initial streamfunction 25 bounces
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Since 1959 the GFD program has promoted an exchange of ideas among researchers in the many 
distinct fields that share a common interest in the nonlinear dynamics of fluid flows in oceanography, 
meteorology, geophysics, astrophysics, applied mathematics, engineering and physics. Each year, the 
program is organized around a ten-week course of study and research for a small group of 
competitively selected graduate-student fellows. The overall philosophy is to bring together researchers 
from a variety of backgrounds to provide a vigorous discussion of concepts that span different 
disciplines, and thereby to create an intense research experience. For the student fellows, the 
centerpiece of the program is a research project, pursued under the supervision of the staff. At the end 
of the program, each fellow presents a lecture and a written report for the GFD proceedings volume. 
Over its history, the GFD Program has produced numerous alumni, many of whom are prominent 
scientists at universities throughout the world. The interdisciplinary atmosphere of the Program is the 
ideal place for young scientists to learn the habits of broad inquiry, of speaking to others with very 
different backgrounds and viewpoints, and of seeking answers in unfamiliar places. 
 
The Program commences with two weeks of Principal Lectures focusing on a particular theme in GFD. 
For 2010, the lectures will be entitled "Swirling and Swimming in Turbulence", and be delivered by 
Glenn Flierl (MIT), Antonello Provenzale (CNR, Italy) and Jean-Luc Thiffeault (U. Wisconsin). Lectures 
by staff and visitors will follow daily on a wide range of GFD and related topics. 
 
Up to ten competitive fellowships are available for graduate students. Successful applicants will receive 
stipends of $5,200 and an allowance for travel expenses within the United States. A small number of 
unpaid fellowships may also be available for strongly qualified students who can support themselves 
financially. Fellows are expected to be in residence for the full ten weeks of the program. The 
application deadline is February 15, 2010. Awards will be announced by April 1, 2010. We seek 
applicants from all areas of Geophysical Fluid Dynamics, and particularly encourage applications from 
women and members of underrepresented groups. Further information and application forms may be 
obtained at http://gfd.whoi.edu, or by writing to: 
 

The GFD Fellowship Committee    Web:  http://gfd.whoi.edu 

Academic Programs Office, Clark Laboratory, MS 31 Telephone:  (508) 289-2219 

Woods Hole Oceanographic Institution   Fax:  (508) 457-2115 

266 Woods Hole Road       E-mail:  gfd@whoi.edu 

Woods Hole, MA  02543-1541 
 

Prospective visitors should contact Neil Balmforth at: njb@math.ubc.ca 
 

WHOI is an Equal Employment Opportunity/Affirmative Action Organization 
The GFD Program is funded by the National Science Foundation and the Office of Naval Research 

GFD project 2009
Erinna Chen, UCSC
Neil Balmforth, UBC
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n→ t Footpoint finds the 
stable fixed point

Focusing

Does this 
focusing 
persist for 
irregular 
topography?



Encore une fois avec la topographie 
randomique

Random Topography

Solve problem for random, Gaussian topography:

h(x) =
∑

k

Ak cos(kx) + Bk sin(kx), Ak ,Bk ∼ N (0, Ĉk),

Covariance function Eh(y)h(y + x) = C (x) =
∑

k Ĉk cos(kx)

Look at:

properties of map r(x)

scattering rate of incoming mode 1 wave
reflected + transmitted energy fluxes: scaling laws depending
on topography



Smooth random topography
Random topography

C (x) = Eh(x)h(0) = σ2e−
1
2 ( x

α )2 , σ = 0.1, α = 0.25

One bounce

0 1 2 3 4 5 6
!0.2

!0.1

0

0.1

0.2

x

h
(x
)

7 bounces

0 1 2 3 4 5 6 7

!0.2

!0.1

0

0.1

0.2

x/2!

h
(x
)

Every collection of h(x_1), h(x_2), h(x_n) is governed by 
an n-variate Gaussian distribution



Random topography

Gaussian random topography with Gaussian spectrum



Focusing persists for random topography
Random topography

C (x) = Eh(x)h(0) = σ2e−
1
2 ( x

α )2 , σ = 0.1, α = 0.25

Streamfunction after 25 bounces

x

z

0 1 2 3 4 5 6
0

0.5
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1.5

2

2.5

3



Simple model for pair random walkRelative separation

dX (1)
t =

∞∑

k=−∞

√
Ĉke ikXtdBk

t

dX (2)
t =

∞∑

k=−∞

√
Ĉke ikXtdBk

t

0 1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

Separation y

m
(y

)

!=3

!=2.5

!=1.75

!=1

!=0.5

!=0.25

Relative separation Yt = X (1)
t − X (2)

t solves

dYt = 2
√

C (0)− C (Yt)dBt

For small Y :
dYt ≈ c0YtdBt ,

Geometric Brownian Motion, which goes to zero almost surely.

Generic clumping of 
deterministic  
walkers in random 
environment



Simple model for pair random walkRelative separation

dX (1)
t =

∞∑

k=−∞

√
Ĉke ikXtdBk

t

dX (2)
t =

∞∑

k=−∞

√
Ĉke ikXtdBk

t

0 1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

Separation y

m
(y

)

!=3

!=2.5

!=1.75

!=1

!=0.5

!=0.25

Relative separation Yt = X (1)
t − X (2)

t solves

dYt = 2
√

C (0)− C (Yt)dBt

For small Y :
dYt ≈ c0YtdBt ,

Geometric Brownian Motion, which goes to zero almost surely.
Share price model for volatile return rates...like pension  fund

Generic clumping of 
deterministic  
walkers in random 
environment



Energy decay
Energy decay

Energy in mode 1 = E|a+
1 |2/|a1|2

0 5 10 15 20 25 30
!2.5
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# of bounces
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y
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True
Naive

Total Energy =
∑∞

k=0 kE|a±k |2/|a1|2

0 5 10 15 20 25 30
0
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E
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e
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Transmitted
Reflected
Naive

Let E|a+
1 |2 = |a1|2e−λ1b, E|a(n)

1 |2 = |a1|2e−λ
(n)
1 b

How do λ1, λ
(n)
1 depend on law of topography?



Scaling laws for uncorrelated topographyScaling Laws

h(x) −→ σh(x/α)

2 parameters: σ, α
Equivalently σ, σD where σ2 = Eh2, σ2

D = Eh2
x ∝ σ2

α2

Scaling with σ

ẋ = F (x , t)
2-point probability density py1,y2(x1, x2, t) satisfies

∂p

∂t
=

(
∂2

∂x2
1

+
∂2

∂x2
2

)
(CF (0)p) + 2

∂2

∂x1∂x2
(CF (x1 − x2)p)

h→ σh ⇒ CF (·)→ σ2CF (·) ⇒ t → σ2t

Time speeds up:

λ1 → σ2λ1, λ(n)
1 → σ2λ(n)

1 .

Scaling with σ

C (x) = σ2e−
1
2 ( x

α )2

10
−2

10
−1

−10
−1

−10
−2

−10
−3

σ

λ
1

 

 

α =0.8, slope=−1.9606

α =0.4, slope=−1.9277

α =0.1, slope=−2.0012

Scaling with α

h(x) −→ σh(x/α)

∂p
∂t =

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
(Cf (0)p) + 2 ∂2

∂x1∂x2
(Cf (x1 − x2)p)

True

10
−1

10
−3

10
−2

α

λ
1

 

 

σ=0.1, slope=−1.0251

σ=0.05, slope=−1.1337

σ=0.01, slope=−0.9739

σ=0.025, slope=−1.033

Naive

10
−1

10
−3

10
−2

α

λ
1(n

)



Dimensional result & power law 
topography

Scaling Laws

Proposed Scaling

λ1 ∼
σ2

α
∼ σσD , λ(n)

1 ∼ σ2

# of bounces to decay by 1/e = 1/λ1

dimensional e-folding length =
2

C0

H2

π

1√
E|h0|2

√
E|h′0|2

valid for uncorrelated topography

C0 ≈ 2.3 from numerical simulations

independent of wave slope µ =

√
ω2

0−f 2

N2−ω2
0

Topography in the North Pacific: Bell’s spectrum

E|h0|2 = (125m)2, E|h′
0|2 = (0.14)2

Formula for uncorrelated topography

dimensional e-folding length = 2
C0

H2

π
1√

E|h0|2
√

E|h′
0|2

= 250km

Numerical simulations

0 0.5 1 1.5 2 2.5 3
600

700

800

900

1000

1100

1200

1300

wave slope µ

k
m

e!folding scale for Bell topography

= 700− 900km

For realistic southern ocean topography obtain 
a decay scale of  1200 km.

For uncorrelated topography 
Gaussianity assumption does 
not matter

Values of wave frequency, 
buoyancy frequency, or 
Coriolis frequency do not 
affect the decay length!

Rough topography is an 
efficient wave decay 
mechanism

Bell:



Energy exchange between waves and vortices

Joint work with Marija Vucelja

Interested in energy exchanges without topography and without 
wave breaking (no smoking gun).  

Two types of energy transfer: 
wave-wave and wave-vortex 

Related questions: 
Shape of the wave energy spectrum? 
Are waves a net energy source or sink for the vortex flow?

Can’t use ray tracing for ocean applications because vortex 
scale is only 50km.



Do-be-do-be-doo: shallow water 

q =
∇× u

h
such that

Dq

Dt
= 0

x = (x, y) u = (u, v)

depth h

Dh

Dt
+ h∇ · u = 0

Du

Dt
+ g∇h = 0

h

Single layer of hydrostatic 
incompressible fluid

D
Dt

=
∂

∂t
+ (u · ∇)

Potential vorticity



Linear equations and wave energy

Dtu
′ + g∇h′ = −(u′ · ∇)U

Dth
′ + H∇ · u′ = 0 Dt =

∂

∂t
+ U · ∇

H ≈ const and ∇ · U = 0

E =
1
2

(
H|u′|2 + gh′2) DtE + ∇ · (gh′u′) = −Hu′u′:∇U

Steady low-Froude number flow s.t.

Linearized perturbations s.t. h=H+h’ and so on:

Disturbance energy and energy exchange term:

ymmv...
Investigate dynamics in doubly periodic geometry



Pseudoenergy for shallow water
Arnold 67, Shepherd 90, Salmon 98

Steady basic flow: 
symmetry with respect to time induces an exact conservation law 
for the disturbance fields, which can be made quadratic at small 
wave amplitude.

Recipe:
start with exact integral conservation laws for total energy and PV:

H =
∫

1
2

(
hu2 + gh

)
dxdy

C =
∫

hC(q) dxdy, where q =
∇× u

h

Here C(q) is a function to be chosen smartly

A = H+ C



Pseudoenergy cntd.

Now pick C(q) such that 
holds for the first variations at the steady basic state.

The structure of that state is given by (valid for any Froude number)

∇ · (HU) = 0 ⇒ HU = −Ψy and HV = +Ψx.

PV conservation along streamlines:

First variation condition then 
leads to Arnold’s famous result:

Q =
∇×U

H
=

1
H

∇ ·
(

∇Ψ
H

)
= f−1(Ψ) ⇒ Ψ = f(Q)

C ′(Q) = Ψ = f(Q)

Ψ = −λQ ⇒ C(Q) = −λ

2
Q2

Important
special case:

δH = −δC ⇒ δA = 0

Enstrophy



Simple steady basic flows
g = H = 1 and |U |! 1From now on:

Sinusoidal shear flow: 

4-vortex flow:

Ψ = sin y, Q = ∇2Ψ = − sin y ⇒ λ = 1

Ψ = sinx sin y, Q = ∇2Ψ = −2 sinx sin y ⇒ λ =
1
2

4-vortex flow combines vorticity 
and strain, good!

It’s also unstable to a large-
scale vortical disturbance...



Note that:

Pseudoenergy at second order
Pseudoenergy at second order in disturbance amplitude and small Froude 
number:

A =
∫

{1
2

(
|u′|2 + h′2)

︸ ︷︷ ︸
=E

+h′u′ · U +
λ

2
[
h′2|∇×U |2 − |∇× u′|2

]
} dxdy

Wave-vortex energy transfer: can E grow without bound if A is conserved?

For small Froude number this means the second term cannot balance unbounded 
growth of E.   This leaves only the vorticity term.  

Not relevant to nearly irrotational SW waves.  Relevant to vortical instability 
of basic flow (eg 4-vortex flow), but not of interest here.

Conclusion:  wave-vortex energy transfer in SW for steady basic flows is 
bounded by the Froude number.  No such a priori limit for wave-wave transfer. 

|h′u′| ≤ E because 0 ≤ (|u′|− |h′|)2



Numerical model
Two numerical models, one based on (h’,u’,v’) the other based on modal 
amplitudes for SW without mean flow.

The second one can integrate much faster in time, once it has been 
debugged...

Both models work in Fourier space and deal with terms such as u’U_x
pseudo-spectrally with appropriate dealiasing.

Examle: 
basic flow chosen as either shear flow or 4-vortex flow.  

Monochromatic initial wave conditions are chosen such that

h′(x, y, 0) and u′(x, y, 0) = ∇φ′(x, y)

are isotropic random functions constrained such that the Fourier 
coefficients are close to a fixed wavenumber kappa_0 = 6

Still a scale separation, but not a slowly varying wavetrain. 



Shear flow Fr = 0.5 initial condition



Shear flow Fr = 0.5: t=200



4-vortex flow F=0.5: t=100



Concluding remarks

Unified numerical modelling of 
atmosphere and ocean should go 
with unified thinking about 
gravity waves


