Mountain Wave Momentum Fluxes in the Southern Hemisphere from Satellite Measurements

M. Joan Alexander, Alison Grimsdell (NWRA/CoRA) and Hector Teitelbaum (LMD/ENS)

Motivation

- Relatively lacking in mountainous terrain.
- Orographic gravity wave drag relatively inefficient in climate simulations.
- Special non-orographic gravity wave drag tuning parameters needed to prevent problems in chemistry-climate models like...
 - Polar winter jet is too strong, and temperatures are too cold.
 - Breakdown of the vortex in spring is too late.
 - Too much ozone loss in spring.

Outline:

I. Combining AIRS and HIRDLS to examine the 3-dimensional details of a southern Andes mountain wave event.

II. Examining the statistics of orographic waves over small islands in the Southern Ocean (preliminary results).

Southern Andes Mountain Wave Event – 8 May 2006 AIRS and HIRDLS

WRF Simulation Comparison to AIRS

WRF Simulation Comparison to HIRDLS

Analyzed Temperatures in ECMWF at 40 km Altitude

Similar pattern of waves extending to the south and east over the ocean.

Horizontal wavelength is ~600 km much longer than observed (~200km)

The waves are stationary and appear in both analysis and forecast fields.

Short horizontal wavelength waves observed directly above the mountains are absent in ECMWF.

Analyzed Temperatures in ECMWF - Cross-section

• Cross-Section: Waves originate near the surface above the topography.

Analyzed Temperatures in ECMWF at 40 km Altitude

• Mechanism described in Sato et al. [2011] for downstream propagation into the jet core when a component of the group velocity is perpendicular to the wind.

• The effect is more pronounced for longer horizontal wavelength waves.

• Although phase is stationary, energy is advected downstream by the component of the wind perpendicular to the wavenumber vector.

Vector Momentum Flux Estimated from AIRS Observations

Momentum Flux ~ $(\lambda_Z/\lambda_X)(AT'/T)^2$ A=attenuation factor (depends on λ_Z as in Alexander & Barnet, 2007)

Wavelet analysis gives horizontal wavelength λ_X propagation direction.

Vertical wavelength λ_Z from the gravity wave dispersion relation,

AIRS Day & Night Analyzed Wave Properties May 8 Case

Region:	Avg. Flux	Vertical Wavelength	Horizontal Wavelength
75-71W, 52-48S	$341 \mathrm{mPa}$	15.8 km	114 km
67-63W, 58-54S	$103 \mathrm{mPa}$	14.8 km	$156 \mathrm{km}$

Orographic Waves over Islands in the Southern Ocean AIRS Observations above South Georgia at 40 km

Brightness Temperature Fluctuations Previous work analyzed a 4-day event [Alexander et al., 2009].

Orographic Waves over Islands in the Southern Ocean

Collectively, these may provide important zonal mean drag forces for the southern hemisphere middle atmosphere circulation x 0.077

South Georgia 2900 m South Sandwich 1370 m Kerguelen 1,850 meters Heard 2700 m

Island Gravity Waves in AIRS Heard and Kerguelen Islands

• Similar features appear above other islands in the Southern Ocean

• We are quantifying the momentum flux from these island sources to quantify the missing southern hemisphere flux in climate simulations.

Island Gravity Waves in AIRS

July-August-September 2003-2004 Event-Average Fluxes

(preliminary results)

- 100 mPa momentum fluxes in the average are quite significant
- These events are common, ~50% of AIRS overpasses in Jul-Aug.
- Compare to zonal mean fluxes ~ 50 mPa in global model parameterizations at these latitudes [Webster et al., 2003]

Conclusions Part I

Leeward energy propagation of Andes mountain waves also seen in AIRS observations and ECMWF analysis fields.

- These waves have longer horizontal wavelengths and much smaller momentum fluxes than the waves observed directly above the topography.
- Orographic wave drag parameterizations still needed to describe the smaller scale waves above the topography, and their propagation is more nearly 2-d, as assumed in the parameterizations.

Conclusions Part II (preliminary)

• Orographic waves above South Georgia, South Sandwich, Kerguelen, and Heard Islands show significant fluxes at 40km in AIRS data.

- Event average fluxes ~ 30-150 mPa over July-September in 2003-2004
- Events occur on average in 50% of the AIRS overpasses in winter months. Variations with season and latitude of the island also observed, which are likely related to seasonal wind variations.

