The origin and mechanism of winter depressions over Saudi Arabia

> Arun Chakraborty Swadhin Behera Rieko Suzuki Ryohji Ohba Toshio Yamagata

THE UNIVERSITY OF TOKYO & MITSUBISHI HEAVY INDUSTRIES LTD. 1-23-9-907 NEZU, Bunkyo-Ku

The University of Hawaii, 01st Dec, 2004

Outline

- Brief climatological overview (Chakraborty et al. 2004)
- Interannual variability of moisture flux (Chakraborty et al. 2004)
- Winter time transients and analysis of G-ANAL (JMA)
- Preliminary results from MM5 simulations
- Future work

Fig. 1. (a) Diagram showing the adjacent seas of Saudi Arabia along with topography, (b) The domain of selected regions studied in this paper (Area I: over Red Sea; Area II: over Abha; Area III: over Arabian Sea and Area IV: over Mediterranean Sea) and (c) a map of climatological precipitation (in mm) from Xie-Arkin over Saudi Arabia.

Semi-annual rainfall signal

Monthly average rainfall

Seasonal Variability

Monthly net moisture flux

Interannual Variability

INTEGRATED MOISTURE TRANSPORT AND RAINFALL ANOMALIES

850 hPa MOISTURE FLUX ANOMALIES (SEPTEMBER - OCTOBER)

DIVERGENT COMPONENT

ROTATIONAL COMPONENT

DIVERGENT COMPONENT

ROTATIONAL COMPONENT

VERTICALLY INTEGRATED MOISTURE FLUX ANOMALIES

SO

NDJ

Seasonal Variability

Monthly net moisture flux

Precipitation from winter disturbances

Mujumdar et. al. 2004)

850 hPa Geo-potential anomalies

Moisture flux anomalies

Type-3

Type-3

G-ANAL (JMA, 1.25X1.25) (6 years: 1999 – 2004)

500 hPa Geopotential Height and Rainfall Animations – Note the influence of propagating western disturbances on the rainfall variability over Saudi Arabia

Vorticity Budget (900hPa)

MM5 Simulation

MM_run1 (90km resolution)
MM_run2 (30km resolution)

Simple ice physics, Kuo cumulus scheme, Bulk PBL fluxes, no multi layer soil temperature model, no shallow convection

MM_run1 (00hr)

40

MM_run1 (36hr)

40

MM_run1 (72hr)

30

MM_run2 (36hr)

MM_run2 (72hr)

MM_run2 (108hr)

Conclusions

- Semi-annual signal for moisture flux.
- Interannual variability of moisture flux due to tropical climatic signals like IOD and ENSO.
- Winter transients triggers Arabian Cyclone (??).
- Stretching and horizontal advection terms are the major contributors to the vorticity dynamics of the cyclone. Vertical advection and tilting terms are relatively weak.
- The horizontal advection term contributes mainly to shift the vorticity pattern toward the direction of the movement of the disturbance and does not contribute to amplify the vorticity.
- The stretching term plays the dominant role for this type of disturbance development..
- The distribution of horizontal advection term simply represents the fact that the vortex is advected by the north-westerly wind.

Future Work

Details structure and their classifications.

 In order to understand the mechanism of development and propagation, high resolution MM5 sensitivity study for all kinds of disturbances by switching on-off (a) condensational heating, (b) surface sensible heat flux and (c) surface latent heat flux

How they are related to NAO, IOD and ENSO ?

