Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability

Tim Li

IPRC and Dept. of Meteorology, Univ. of Hawaii

Acknowledgement. B. Wang, C.-P. Chang, P. Liu, X. Fu, Y. Zhang, Kug

Variability of Indian monsoon

- Indian-Australian monsoon in-phase relationship
- TBO structure and origin
- Relative role of remote vs. local SSTA forcing:
 - An AGCM study

Indian Ocean SST has been long thought to play a weaker role in Indian monsoon rainfall than does the EEP SST.

In the first part we show that on the quasi-biennial time scale the AIR has significant positive correlations with IO SSTA and local moisture transport in preceding spring and winter.

Q: What processes are responsible for the QB and LF interannual variabilities of the Indian monsoon rainfall?

- 1. Large-scale east-west circulation
- 2. Land-ocean thermal contrast
- 3. Synoptic wave activity/monsoon trough in WP

Local processes (IO SSTA & moisture transport) prior to the monsoon season

2. Indian-Australian monsoon in-phase relationship

Why does a strong (weak) Australian monsoon often follow a strong (weak) Indian monsoon?

India WET → Australia WET	India DRY → Australia DRY	India DRY → Australia WET	India WET → Australia DRY
10	9	1	3
10	9	1	5
Australia WET	Australia DRY	Australia DRY	Australia WET
Australia WET → India WET	Australia DRY → India DRY	Australia DRY → India WET	Australia WET → India DRY

A simple explanation of this in-phase relationship is that both the Indian and Australian monsoons are controlled by ENSO.

$$I_{wet} \Longrightarrow A_{wet}$$

La Nino			Normal				
1954	1956	1971	1973	1978	1980	1983	1990
		1975			19	94	

El Nina			Normal	
951	1965	1982	1986	1968 1985 1992
	1987	1991		

 $I_{dry} = A_{dry}$

Velocity potential difference fields

The result suggests that Indian Ocean SSTA may play a active role in bridging the Indian and Australian summer monsoons.

3. Seasonally evolving TBO pattern and its origin

Seasonal-sequence EOF analysis using NCAR/NCEP reanalysis data (1950-1999)

Shading: rainfall

Vector: 925mb wind

200mb wind: first baroclinic mode structure

Data: seasonal mean (DJF, MAM, JJA, SON) fields of

- Precipitation, SLP, SST
- 925mb U and V
- 200mb U and V
- 850mb geopotential height

What is the origin of the TBO in the monsoon region?

Hypothesis 1:

TBO is forced by remote forcing from the eastern equatorial Pacific.

Hypothesis 2:

TBO is an air-sea coupled mode in the monsoon region.

Implication: The QB component of ENSO may result from the inter-basin teleconnection between the monsoon/warm ocean and eastern Pacific.

IPRC Hybrid coupled GCM:

ECHAM4 AGCM coupled with 2.5-layer UH intermediate ocean model (Wang et al. 1995)

Coupled ECHAM4-ocean model 50-yr simulation

The hybrid coupled GCM experiments suggest that

TBO is originated from the monsoon-warm ocean interaction. The QB component of ENSO may result from the interaction between the monsoon/IO and Pacific.

→Analogy to the PNA pattern (internal atmospheric dynamics vs. external forcing)

The TBO is an inherent monsoon mode, while the El Nino forcing may magnify the signal.

4. Relative role of remote vs. local SSTA forcing in shaping the A-A monsoon anomalies

Exp1: Eastern Pacific SSTA only Exp2: Western Pacific SSTA only Exp3: Indian Ocean plus eastern Pacific SSTA Exp4: All three regions Exp5: Global SSTA

Major results:

A seasonal-dependent teleconnection character:

IO SSTA \rightarrow WP circulation anomaly (Boreal summer/fall)

EP SSTA \rightarrow IO circulation anomaly (Boreal winter)

Square:EP SSTA onlyTriangle:EP plus IO SSTACircle:WP SSTA only

Open symbols: WP domain

Close symbols: IO domain

Conclusion:

IO SSTA has significant impacts on WP winds in JJA(0) and SON(0)

EP SSTA has a much greater impact on IO wind in boreal winter than boreal summer.

Q: Why does the El Nino have a greater impact on IO wind in boreal winter than boreal summer, even though the El Nino forcing itself might be stronger in summer ?

In boreal summer, SSTA amplitude weaker, but shifting to the west →Stronger ascending motion in the central equatorial Pacific Speculation: The weaker response in IO may be attributed to the seasonal shift of the thermal equator – an asymmetric basic state.

Conclusions

- Quasi-biennial variability of Indian monsoon is attributed to local SST and moisture transport in IO, while lower-frequency variability results from remote forcing in the Pacific.
- TBO structure and origin: TBO might be originated from local air-sea interactions while ENSO may amplify the biennial signal.
- Asian-Australian monsoon in-phase relationship: in addition to remote ENSO forcing, eastward expansion of Indian Ocean SSTA may contribute to the in-phase relationship.
- Remote vs. local SSTA forcing in shaping the A-A monsoon anomaly: numerical experiments reveal a seasonal dependent inter-basin teleconnection character between the tropical IO and Pacific Ocean.

SINTEX CGCM Analysis NINO3.4 SST for El Ninos (25 cases)

El Nino only Case

Indian Ocean Warming Case

Wind anomalies along Equator (1S-1N)

Initiation of Philippine Sea Anticyclone anomaly in SON(0)

Square:EP SSTA onlyTriangle:EP plus IO SSTACircle:WP SSTA only

- Open symbols: WP domain
- Close symbols: IO domain

RMSE

Issue III: Interdecadal change of the monsoon-ENSO relationship

• Why is the negative monsoon-ENSO correlation broken in recent decade?

Hypothesis:

— Eastward shifting of El Nino convection

SSTA composites (wet minus dry I-AM)

Non-ENSO years

ENSO-years

2. TBO structure and origin

1.5-2.5yr bpf/total percentage of SST, 1950-1999

