Red Sea Outflow simulated in a locally high-resolution OGCM - seasontal variation and interaction with the Somali current -

by H. Aiki, K. Takahashi, H. Sakuma and T. Yamagata (JAMSTEC/Univ.of Tokyo)

OUTLINE

- 1. Introduction
- 2. New ocean model
- 3. 15 years integration
- 4. Sensitivity experiments
- 5. Summary

• BAM strait: 5km wide, 160m deep

Peters et al. (2003)

- BAM strait: 5km wide, 160m deep
- salinity of Red Sea water: 41psu

Bower et al. (2000)

- BAM strait: 5km wide, 160m deep
- salinity of Red Sea water: 41psu
- seasonal outflow: 0.6 Sv (winter) 0.05 Sv (summer)

Murray et al. (1997)

water exchange at the BAM strait

Strait-Resolving OGCM

Non-hydrostatic formulation

stepped-sigma vertical coordinate

Transposed poles

curvelinear orthogonal coordinates (Bentsen et al., 1999)

Global calculation

large scale feedback tide potentials (M2, S2, K1, O1)

Climatology forcing

wind stress: ECMWF monthly heat and water fluxes: COADS monthly

240 x 256 x 30 grids in the Mercator map

number of the horizontal points $240 \times 256 = 61440$ (1-deg global model: $360 \times 180 = 64800$)

Horizontal Resolution

1.5km BAM strait20km off the Somalian peninsula80km Indian Ocean200km Pacific/Atlantic Ocean

depth [m]

1400

10N

1 IN

1.2N

13N

14N

15N

15N

10N

Relative vorticity at the sea surface

Sea Surface Salinity

reference run monthly wind stress monthly water and thermal fluxes

Where is wind stress important?

three sensitivity experiments

- monthly wind over the Red Sea
- monthly wind over the gulf of Aden
- monthly wind over the Indian Ocean

(elsewhere annual mean steady wind is applied)

seasonal evolution of Upper Thermocline Depth

Where in the Indian Ocean is wind stress important?

two sensitivity experiments

- monthly wind over the Arabian sea (north of 9N)
- monthly wind over the equatorial Indian Ocean (south of 9N) (elsewhere steady wind is applied)

one sensitivity experiment

• Coriolis parameter is fixed in the Arabian marginal seas.

Summary

We have developed a strait-resolving OGCM to investigate seasonal variability of the Red Sea water outflow and its interaction with larger scale currents.

Indian Ocean

- Monsoon wind over the Arabian Sea remotely controls the strait water exchange.
- roles of coastal Kelvin waves rather than Rossby waves.

gulf of Aden

- discharged RSW (incoming Indian Ocean water) is characterized by anticyclonic (cyclonic) vorticity.
- less mixing in the strait (RSW concentration was 0.6), whereas more mixing by the frontal instability in the gulf of Aden (concentration reduced to 0.2).

Red Sea water transport at the BAM strait

Wind or Buoyancy forcing ?

reference run

monthly wind stress monthly water and thermal fluxes

two sensitivity experiments

monthly wind (steady buoyancy flux)

monthly buoyancy flux (steady wind)

240 x 256 x 30 grids in the Mercator map

Horizontal Resolution

1.5km BAM strait20km off the Somalian peninsula80km Indian Ocean200km Pacific/Atlantic Ocean

Summary

Seasonal variability of the Red Sea water outflow is investigated using a newly developed ocean model.

Indian Ocean

 Monsoon wind over the Indian Ocean remotely controls the strait water exchange.

gulf of Aden

- coastal upwelling in response to the Southwest Monsoon.
- overflowed RSW (incoming Indian Ocean water) is characterized by anticyclonic (cyclonic) vorticity.
- less mixing in the strait (RSW concentration was 0.6), whereas more mixing by the frontal instability in the gulf of Aden (concentration reduced to 0.2).

Red Sea

• less impact on the late summer stopping of the strait overflow.