2001 - Ph.D. (Physical Oceanography and Scientific Computing), University of Michigan, Ann Arbor, Michigan
1996 - M.S. (Physics and Applied Mathematics), Moscow Institute of
Physics and Technology, Russia
Research Interests
Equatorial dynamics
Stability analysis and its geophysical applications
Nonlinear dynamical system analysis
Stochastic modeling
Mixing parameterization in Ocean models
Theoretical oceanography
Scientific Work Experience
Assistant Reseacher, International Pacific Research Center, SOEST,
University of Hawaii, Honolulu, Hawaii, February 2009 - June 2017
Ocean Mixing Specialist, International Pacific Research Center, SOEST,
University of Hawaii, Honolulu, Hawaii, January 2008 - January 2009
Visiting Assistant Researcher, International Pacific Research Center, SOEST,
University of Hawaii, Honolulu, Hawaii, July 2005 - December 2007
Postdoctoral Fellow, International Pacific Research Center, SOEST,
University of Hawaii, Honolulu, Hawaii, January 2004 - June 2005
Postdoctoral Fellow, Department of Oceanography, SOEST, University
of Hawaii, Honolulu, Hawaii, January 2001 - December 2003
Graduate Research Assistant, Department of Atmospheric, Oceanic
and Space Sciences, University of Michigan, Ann Arbor, January 1997 - December 2000
Refereed Publications
Moum J.N., A. Natarov, K.J. Richards, E.L. Shroyer, and W.D. Smyth, 2022: Mixing in Equatorial Oceans. In Ocean Mixing: Drivers, Mechanisms and Impacts, eds A. Naveira Garabato and M.P. Meredith., Elsevi, , 257-273, doi:10.1016/B978-0-12-821512-8.00017-7. IPRC-1557.
Richards, K. J., A. Natarov, and G.S. Carter, 2021: Scaling of shear-generated turbulence: the equatorial thermocline, a case study. J. Geophys. Res.-Oceans, , doi:10.1029/2020JC016978. IPRC-1517.
Natarov, A., and K.J. Richards, 2019: Enhanced energy dissipation in the equatorial pycnocline by wind-induced internal wave activity. J. Geophys. Res.-Oceans, 124, 6200-6217, doi:10.1029/2019JC015228. IPRC-1405.
Natarov, A., and K.J. Richards, 2019: On Plane Internal Waves, Their Amplification, and Potential to Break in a Rotating Stratified Quiescent Fluid. Geophysical and Astrophysical Fluid Dynamics, 113 (3), 257-286, doi:10.1080/03091929.2018.1557654. IPRC-1353.
Soares, S.M., A. Natarov, and K.J. Richards, 2016: Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY. J. Geophys. Res.-Oceans, 121 (5), 3297-3324, doi:10.1002/2015JC011600. IPRC-1200.
Natarov, A., and K.J. Richards, 2015: Persistent presence of small vertical scale velocity features during three-dimensional equilibration of equatorial inertial instability. Physics of Fluids, 27 (8), 84109, doi:10.1063/1.4928319. IPRC-1132.
Richards, K.J., A. Natarov, E. Firing, Y. Kashino, S.M. Soares, M. Ishizu, G.S. Carter, J.H. Lee, and K.I. Chang, 2015: Shear-generated turbulence in the equatorial Pacific produced by small vertical scale flow features. J. Geophys. Res.-Oceans, 120 (5), 3777-3791, doi:10.1002/2014JC010673. IPRC-1124.
Natarov, A., and K.J. Richards, 2009: Three-dimensional
instabilities of oscillatory equatorial zonal shear flows on the
equatorial beta-plane. J. Fluid Mech., 623, 59-74.
Natarov, A., K. Richards, and J.P. McCreary, 2008: Two-dimensional
instabilities of time-dependent zonal flows: Linear shear. J.
Fluid Mech., 599, 29-50.
Natarov, A., and P. Muller, 2005: A dissipation function for
internal wave radiative balance equation. J. Atmos. Ocean. Tech., 22,
1782.
Müller, P., and A. Natarov, 2003: The
Internal Wave Action Model IWAM. In P. Müller
and D. Henderson (Eds.), Proc. 'Aha Hulikoa'a Hawaiian Winter
Workshop, University of Hawaii, Honolulu, Hawaii.
Boyd, J.P., and A. Natarov, 2002: Shafer (Hermite-Pad'e)
Approximants for Functions with Exponentially Small Imaginary Part
with Application to Equatorial Waves with Critical Latitude. Appl. Math. Comp.,
126 (1), 109-117.
Natarov, A., and J.P. Boyd, 2001: Beyond-All-Orders Instability
in Equatorial Kelvin Wave. Dyn. Atmos. Oceans, 33 (3), 191-200.
Natarov, A., 2001: Two Studies on Waves in Geophysical Fluids: I.
Beyond All Orders Instability in Equatorial Kelvin Wave II. Nonlinear Dynamics
of Baroclinic Wave Packets in Strongly Unstable Currents. Ph.D. thesis,
University of Michigan.
Boyd, J.P, and A. Natarov, 1998: A Sturm-Liouville Eigenproblem
of the Fourth Kind: A Critical Latitude with Equatorial Trapping. Stud. Appl. Math.,
101 (4), 433-455.