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ABSTRACT

The variability of El Niño–La Niña events was analyzed in a low-dimensional phase space, a concept derived
from dynamic system theory. The space–time extended EOFs derived from the observed monthly mean SST
field over tropical Pacific were used as the basis of the phase space that describes the time evolution of ENSO
signals. It was shown that the essential features of the ENSO variability, such as the irregular oscillation, the
phase locking to the annual cycle, and the interdecadal changes in its propagation and onset, can be effectively
represented by a three-dimensional phase space. The typical El Niño–La Niña life cycle is four years with its
mature phases in boreal winter. The intensity of the ENSO signal within one life cycle is closely linked to the
frequency of its occurrence (onset). The interdecadal variability of the ENSO signals is characterized by both
the intensity and the frequency of occurrence, displaying an irregularity with the gross feature comparable to
the regime behavior and intermittency of some low-dimensional chaotic systems.

1. Introduction

One of the primary goals of observational study is
deducing certain time-invariant quantities to describe
the underlying physical system. Classic statistics pro-
vide physical information in terms of means, covari-
ances, etc. The underlying dynamics are often described
in the frequency domain in terms of spectral character-
istics or in the time domain with the help of some sto-
chastic models. Since the long-time behavior of the at-
mosphere–ocean coupled dynamics, such as ENSO, is
typically a complex of an interplay between periodicity
and randomness, the classic approaches cannot precisely
characterize the observed or modeled variability, which
typically display structured but nonperiodic oscillations.
For this purpose, the concepts and ideas developed in
recent decades in the field of nonlinear dynamic system
theory provide new possibilities (e.g., Eckmann and
Ruelle 1985; Abarbanel et al. 1993; Zeng et al. 1993;
R. Wang 1994). Here, in contrast to the classic ap-
proaches in time or frequency domains or in physical
space, the dynamics are studied in phase space (or state
space) defined on a prescribed basis (a set of coordi-
nates) that describes the underlying system (e.g., Wal-
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lace et al. 1993; Fraedrich et al. 1993; Tziperman et al.
1995; Wang et al. 1995). The time evolution of the
underlying system leads to trajectories typically circu-
lating along some manifolds, where each circulation is
called an ‘‘orbit.’’ In this way, the detailed information
about the variability can be derived by analyzing the
orbit structures and probability measures in a phase
space. This information in turn promotes a conceptual
understanding of the underlying system (e.g., Wang and
Fang 1996; Wang et al. 1998) and may serve as the
basis for theoretical and practical purposes such as the
prediction of seasonal climate. The present paper is an
application of the phase space analysis to the variability
of the atmosphere–ocean coupled system associated
with El Niño–La Niña events based on observed month-
ly mean SST data.

El Niño–La Niña and the associated Southern Oscil-
lation (ENSO) are well-documented phenomena (see,
e.g., Rasmusson and Carpenter 1982; Philander 1990;
Wright et al. 1988; Deser and Wallace 1987, 1990) and
there is a growing understanding of the physical mech-
anisms (e.g., Neelin et al. 1994; Wang and Fang 1996;
references therein). The time evolution of the ENSO
displays a complex of phase locking to the annual cycle
with a biennial component (Rasmusson et al. 1990),
irregular change with 2–7-yr cycle (Trenbenth and Shea
1987), and interdecadal variabilities (Wang 1995a, b;
Wang and Wang 1996). Many theoretical studies and
model experiments (Vallis 1986, 1988; Zebiak and Cane
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1987; Chang et al. 1995; Tziperman et al. 1995; Wang
and Fang 1996) suggest that the ENSO variability may
be characterized by a low-order chaotic attractor with
stochastic forcing. The well-known Zebiak–Cane ENSO
model (Zebiak and Cane 1987) produces basically a
low-order oscillation (Chang et al. 1995). In particular,
using a low-order dynamic system model derived from
the first principles, Wang and Fang (1996) are able to
show the essential characteristics of the ENSO evolution
such as the irregularity and phase locking to the annual
cycle. The objectives of the present study are concerned
with the observational evidences for the ENSO dynam-
ics being a low-dimensional attractor. We basically deal
with the derivation of a low-dimensional phase space
from observed variables to effectively describe the time
evolution of the ENSO, particularly with respect to the
observed 2–7-yr variability, interdecadal changes, and
the phase locking to the annual cycle.

It is well known that a dynamic system with as low
as three nonlinearly coupled variables, hereafter referred
to as S1, can produce chaotic variability whose power
spectrum is typically continuous and broadbanded, re-
sembling those obtained from stochastic processes (Lo-
renz 1963). On the other hand, a complex system with
a large (or even infinite) number of degrees of freedom,
referred to as S2, may lead to relatively simple dynamics
in terms of low dimensionality due to mechanisms such
as nonlinear interaction, self-organization, or phase
locking, etc. In many instances, the qualitative dynamics
of S2 with respect to the long-time behavior, such as the
probability density distribution in phase space and the
associated dimensionality and characteristic exponents,
are basically the same as the corresponding dynamic
system S1. Now the question is, can some of the sub-
systems of the atmosphere–ocean coupled dynamics,
which apparently belong to S2 but display low-frequen-
cy variabilities, be expressed by a dynamic model of S1

with fewer nonlinearly coupled variables such that the
qualitative dynamics of S1 is equivalent to the original
S2? The direct answer to this question may be difficult
for many practical issues, as it is not always obvious
that such an S1 does exist, or when it does, it is not
often easy to find its exact formalism. However, we can
indirectly deduce the static and dynamic characteristics
based on observational data derived from S2 to show
whether such an S1 does exist and what characteristics
it possesses. The key to this issue is the embedding
theorems (Whitney 1936; Takens 1981; Sauer et al.
1991) and the associated nonlinear time series analysis
(see, e.g., Eckman and Ruelle 1985; Sauer et al. 1991;
Abarbanel et al. 1993). The embedding theorems prom-
ise that, if the asymptotic state of S2 is on a low-di-
mensional attractor whose phase space is unknown, one
can reconstruct the phase space by collecting a sufficient
number of linearly independent observables from S2

such that the reconstructed phase space is equivalent to
the original one in the sense that the metric properties
of the S2 are preserved in the reconstructed one (see

Whitney 1936). In this way, the long-time behavior of
the underlying system can be more precisely character-
ized by its orbit structures and probability measures; the
predictability can be analyzed in terms of exponential
divergence of nearby trajectories (or sensitive depen-
dence on the initial states) and the prediction of its future
behavior becomes a nonlinear (locally linear) extrapo-
lation of the trajectories in a phase space.

In reality, the reconstructed phase space may be only
a projection of a part of the original phase space due
to the complexity of the underlying system (S2) and the
quality and quantity of the observational data (Sauer et
al. 1991; R. Wang 1994 and reference therein). This,
however, does not prevent us from using the recon-
structed phase space as a good approximation to the
reality, considering that all theoretical models are, after
all, approximations to reality.

The paper is structured as follows: sections 2 and 3
are devoted to the data and method used in the present
study. The analysis results will be presented in sections
4 and 5, followed by concluding remarks in section 6.

2. Data

The data used are the 48-yr (January 1950–December
1997) monthly mean sea surface temperatures (SSTs)
over the tropical Pacific (308S–308N, 1208E–808W) in-
terpolated on 58 latitude 3 158 longitude grids by Wang
(1995a) based on the Comprehensive Ocean–Atmo-
sphere Data Sets (Woodruff et al. 1987) from 1950 to
1992 and the SST analysis data from the National Cen-
ters for Environmental Prediction (NCEP) from 1985 to
1996 (Smith et al. 1994). One of the advantages of this
dataset is that the meridional structure of the SST is
well represented. For comparison, Fig. 1 gives the
monthly mean SST for two arbitrary months derived
from the dataset of 58 latitude by 158 longitude grid
used in the present study (Wang 1995a) and that from
the 2.58 latitude 3 2.58 longitude grids used in NCEP
reanalysis. Note that there is a good agreement between
the two datasets. The number of grids L 5 132 and the
time length N 5 576. Seasonal cycle and the interannual
linear trend are removed from each grid, as in Vautard
et al. (1996). As an example, Fig. 2 displays two time
series derived from regional mean SST based respec-
tively on the grids in eastern (158S–158N, 908–1408W)
and western (158S–158N, 1408E–1808) Pacific.

It should be noted that, in the present context, the
removal of the annual cycle and interannual linear trend
does not influence the subsequent analysis. The climate
mean annual cycle is a linear part of the attractor. Its
removal does not disturb the relative order of the tra-
jectories in phase space and thus does not influence the
analysis of the orbit structure, including the impact of
the annual cycle on the ENSO. The linear trends are
mostly associated with the artificial changes occurring
at stations close to the continents. For instance, when
we performed the space–time extended empirical or-
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FIG. 1. The monthly SST anomalies derived from tropical Pacific based on 58 lat 3 158 long
grids (Wang 1995a,b) and 2.58 lat 3 2.58 long grids (Reynolds and Smith 1994).

FIG. 2. Reginal mean SST for eastern (solid line) and western (dashed line) tropical Pacific,
obtained by avraging between 158S and 158N for 908–1408W and 1408E–1808, respectively. The
figure shows their 7-month moving average.
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thogonal function (ST-EOF) decomposition without
having the linear trend removed, we found that one of
the dominant ST-EOF modes appears with the largest
anomaly around the northeast corner (close to Califor-
nia) and the southwest corner (close to Australia). The
anomalies of all other grids are close to 0. After re-
moving the linear trend, this mode disappeared, imply-
ing that, apart from the above-mentioned two regions,
the linear trends over all other grids on the tropical
Pacific Ocean are negligible. However, it should not be
surprising to find a significant linear trend in the long-
term mean SST over certain observed period, consid-
ering that a linear trend is a part of longer-term fluc-
tuation. Our major concern here is the interdecadal var-
iation of the ENSO that is related to the changes in
ENSO life cycle, its intensity, and the frequency of its
occurrence.

3. Methodology

a. Phase space reconstruction

The basic ideas of describing the underlying dynam-
ics in phase space are derived from dynamic system
theory (e.g., Guckenheimer and Holmes 1983; Eckmann
and Ruelle 1985). A dynamic system typically involves
a law of motion, F, and a phase space (or state space),
V, such that the state of the system at a given moment
t corresponds uniquely to one point in V and the time
evolution of the states, governed by F, results in a tra-
jectory that typically settles asymptotically on a com-
pact subset called the ‘‘attractor.’’ The phase space is
the coordinate system where the attractor sits. As the
dynamics of physical systems often involves wave mo-
tions of various kinds, the attractor often resides on
some manifolds, parameterized locally by an m-dimen-
sional real vector, v ∈ Rm.

In practice, we know neither F nor V. Typically we
have only a limited number of observations, such as
temperature, pressure, wind velocity, etc., measured at
a fixed sampling interval for a certain time period. Each
of the observations can be regarded as an arbitrary real
function on V such that a real value, x, is assigned to
each state. Now the question is, based on the available
observations, can we produce a phase space equivalent
to V in the sense that at least some of the metric prop-
erties in V are preserved? In terms of dynamic system
theory, this is referred to as phase space reconstruction.
The theoretical basis for such a possibility is provided
by the embedding theorem of Whitney (1936): assume
that the asymptotic state of the system is a m-dimen-
sional attractor in V; Whitney’s embedding theorem
states that an Euclidean space, X , RM, spanned by M
linearly independent observations is equivalent to V
given that M $ 2m 1 1 (note that this is a sufficient
condition; in reality, M may not need to be larger than
2m 1 1). The equivalence relation implies that the met-
ric properties in V are faithfully preserved in X , RM.

A phase space with such a property is called an ‘‘em-
bedding.’’ In this sense, the phase space can be defined
as an arbitrary set of coordinates as long as it is an
embedding. There are thus many different ways to re-
construct a phase space. In the case of single observable,
Takens (1981) shows that a convenient choice for such
a set of coordinates is the M linearly independent ob-
servations derived from different time lag of the same
time series, called time-delay coordinates. In other
words, a single time series suffices to produce an em-
bedding of the phase space, given that the time series
is sufficiently long (see Smith 1988; Sauer et al. 1991).
Figure 3a gives an example of a two-dimensional phase
space spanned by a single time series (abscissa) and its
seven-month delay (ordinate) derived from the regional
mean monthly SST over eastern equatorial Pacific (see
Fig. 2). This two-dimensional plane may not necessarily
be an embedding, but only a projection of it. Never-
theless, we can still see certain structures of the orbits,
particularly the phase locking to the annual cycle by
examining how the points are distributed on the plane
in Fig. 3a.

As the system under study is spatially extended, the
phase space can also be derived from variables observed
from different locations of the underlying system. Fig-
ure 3b is another example of a two-dimensional phase
space spanned by two spatial variables derived from
eastern and western equatorial Pacific (see Fig. 2). This
is almost the same version as the one with time-delay
coordinates (Fig. 3a); however, it is much noisier, has
less structure, and has no clear sign of phase locking.
Thus the effectiveness of a phase space reconstruction
does depend on how it is done. One of the tasks of
phase space reconstruction is thus to find a phase space
representation that best serves our purpose. Since there
is an advantage with the time-delay coordinates, as dem-
onstrated in Fig. 3a, and at the same time, our system
is spatially extended, the time-delay techniques of Tak-
ens (1981) can be very conveniently extended to mul-
tiple variables sampled on grids or at stations. Assume
that measurements are taken at L locations over a spe-
cific geographical region at an equal time interval t for
a time period of T 5 N 3 t , leading to a set containing
NL-dimensional vectors, extension of Takens’s embed-
ding theorem leads to a M 5 L 3 K-dimensional Eu-
clidean space where K is associated with the maximum
number of time lags. In this way, a given state in the
reconstructed phase space, X , RM, whose elements,
{xt, t 5 1, 2, . . . , N}, correspond to a space–time
coherent structure within the time window from t 2 (K
2 1)t to t in physical space,

xt 5 {xl (t2kt ) , l 5 1, 2, . . . , L;

k 5 0, 1, 2, . . . , K 2 1}. (1)

Thus the trajectory in X is equivalent to the changes of
the space-time structure with the sliding time window
as the time t runs (Fraedrich et al. 1993). This often
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FIG. 3. (a) Two-dimensional phase portrait in the plane spanned by eastern and western tropical Pacific
monthly mean SST anomaly derived from Fig. 2. (b) The same as (a) except the plane is spanned by
eastern tropical Pacific SST and its 7-month delay. Marked in the figures are also the positions for winter
months (DJM) in order to show phase-locking of the ENSO to the annual cycle.
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results in a phase space of a rather high dimension,
referred to here as the raw phase space.

The choice of the window length K is an important
factor to be considered in the present context. For a
wavelike motion, K should be chosen around a quarter
of the average life cycle. In the subsequent analysis, the
maximum time lag of 11 months is used for the time
delay coordinates (1), which is equivalent to a time
window of K 5 12 months, close to a quarter of the
average ENSO life cycle in physical space. It must be
pointed out that the 12-month window is a convenient
choice, for that is both the length of the year and around
a quarter of the ENSO life cycle. We can guarantee the
same qualitative results for windows ranging from 8
months to 2 years.

Application of the K 5 12 month window to the L
5 132 spatial variables leads to a M 5 1582-dimen-
sional phase space, which is apparently too high to be
of any practical use. However, not every direction in X
is equally important or meaningful. Hence the task of
phase space reconstruction here is reduced to the se-
lection of the subspace Y , Rm from the raw phase
space X , RM, with dimension m K M that is more
relevant to the underlying dynamics. The standard way
of reducing the dimension of (1) is the linear transfor-
mation of phase space.

b. Phase space transformation

The components of x ∈ X may be linearly indepen-
dent, but they are mostly linearly correlated, particularly
when low-frequency variabilities are involved. This can
often be eliminated by a proper linear transformation,
in particular, by projecting X onto a prescribed orthog-
onal basis,

yt 5 Axt, for yt ∈ Y , Rm; xt ∈ X , RM, (2)

where A is a (nonsingular) linear transformation oper-
ator or the prescribed basis. In fact, the two-dimensional
phase space in Fig. 3 can be regarded as a result of a
particular linear transformation of X for K 5 7. In this
case, the prescribed basis, A, is not orthogonal. Appar-
ently one can design various kinds of A for (2), de-
pending on the purpose of the phase space reconstruc-
tion and the data available.

In practice, the purpose of the phase space transfor-
mation is to find a suitable projection of the recon-
structed phase space such that

R the information contained in the data is condensed in
the sense that fewer coordinates are needed to rep-
resent the original reconstruction by eliminating the
directions corrupted by noise;

R a visual display of a particular subspace is optimized
by projecting X onto its orthogonal basis, since the
linear correlation of the coordinates can strongly dis-
tort the phase space picture; and

R a possible physical interpretation can be given to the
variability represented by a particular subspace.

There are many different kinds of orthogonal basis for
X available (e.g., Broomhead and King 1986; Fraedrich
1986; Sauer et al. 1991). The EOF (empirical orthogonal
function) basis, whose advantages cover all the above
three criteria, is one of the best choices. The projection
of X , RM onto its EOF basis is referred to as principal
component transformation (Fraedrich and Wang 1993).
As the resulting EOFs contain both spatial and temporal
dependencies, they are often referred to as ST–EOFs.
Projecting X onto its ST-EOF basis leads accordingly
to the space–time principal components (ST-PCs), Y ,
Rm, with m typically much less than M after the irrel-
evant directions, in particular those corrupted with
noise, are eliminated. Note that the ST-EOF basis is
reduced to the standard EOF analysis for K 5 1. The
advantage of the ST-EOF basis over the standard EOFs
were demonstrated in Fraedrich et al. (1993) and Wang
et al. (1995). As the ST–EOFs contain both spatial var-
iables and time dependence, it is a natural way to rep-
resent wavelike motions in the space–time field and thus
provide a natural basis for the phase space. The phase
space of such a reality as the ENSO derived directly
from EOFs would be too noisy to be of practical use.

The EOFs can be directly obtained from the standard
procedure of diagonalizing the M 3 M covariance ma-
trix derived from (1), as in the extended EOF analysis
(Weare and Nasstrom 1982; Wang 1991; Fraedrich et
al. 1993). They can also be equally obtained by the
procedure of the multichannel singular spectrum anal-
ysis (MSSA; Plaut and Vautard 1994), which is math-
ematically the same as the procedure of the reembedding
(Fraedrich and Wang 1993; R. Wang 1994), however,
in a different context.

In the standard EOF analysis, one can directly di-
agnose the M 3 M dimensional covariance matrix,
where M 5 1582 in the present instance. This can be
directly carried out on larger computers. For smaller
computers, one can equally diagnose the N9 3 N9 time
matrix where N9 5 N 2 K 1 1 5 553. In this case, the
ST-EOF basis is the standardized principal components
(PCs).

In the MSSA (Plaut and Vautard 1994) or the method
of reembedding (Fraedrich and Wang 1993; R. Wang
1994), the standard EOF decomposition is applied
twice: the first application to the L spatial variables leads
to the reduction of the number of spatial variables down
to P K K PCs, which, in turn, are used for the phase
space reconstruction based on (1), instead of the L var-
iables, leading to M9 5 P 3 K-dimensional raw phase
space. The second application of the standard EOF anal-
ysis to this M9-dimensional phase space leads to basi-
cally the same results as those directly derived from the
M-dimensional one. This procedure is particularly use-
ful when dealing with large L.

The amplitudes and timescales of yt ∈ Y are deter-
mined by the space–timescales of the underlying system.
This leads to a separation of different scales (Wang
1991; Fraedrich et al. 1993, Wang et al. 1995). Our
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purpose is the selection of a subspace spanned by the
relevant ST-PCs in Y ∈ Rm that describes the time evo-
lution of the system under study. The basis for such a
selection is, instead of some mathematical criteria de-
rived from the distribution of the eigenvalues, the phys-
ical characteristics of the underlying system in terms of
its space–timescales [see R. Wang (1994) for a discus-
sion]. In searching for physical interpretations, one often
relies on the examination of the Hovmöller diagram of
the ST-EOF patterns, or the cross-time-lagged correla-
tion of the ST-PCs and their power spectra (Fraedrich
et al. 1993; Wang et al. 1995). This will be discussed
in section 4 in the context of application.

c. Phase space analysis

The phase space reconstruction and phase space trans-
formation are the basic steps for phase space analysis
that are aimed at reduction of a phase space that de-
scribes the system under study. The purposes of phase
space analysis are quantifying the static characteristics
and the predictability of the underlying dynamics, un-
derstanding their physical implication, and predicting
its time behavior (see, e.g., Eckman and Ruelle 1985;
Abarbenel et al. 1993).

Phase space analysis can reveal static properties in
terms of dimensionality and orbit structures that are im-
possible for classic time series analysis. For instance,
power spectrum analysis of a scalar time sequence, {xi,
i 5 1, 2, . . . , n}, can show whether a system is periodic
or quasiperiodic (torus with basic frequencies, {vi, i 5
1, 2, . . . , m}). However, for systems with broad con-
tinuous spectra, which is often the case for the observed
climate variables, it is difficult to get any new infor-
mation unless the underlying dynamics is a truly random
processes. Climate systems are often broadbanded but
are not necessarily random processes. The ENSO phe-
nomenon is one of the striking examples (e.g., Tzip-
erman et al. 1995; Wang and Fang 1996; Jin et al. 1994).
The differences between stochastic and chaotic dynam-
ics can be most clearly seen from the orbit structure and
the associated probability density distribution in phase
space. Structured variability can often be embedded or
well approximated in a low-dimensional phase space
while this is impossible for stochastic process; the struc-
tured variability often occupies only a portion of the
phase space, that is, the trajectory visits one part of the
space more often than others, leading to low-frequency
fluctuation and regime behavior, which is not often the
case for random process. In the present context, since
each point in the phase space corresponds to a space–
time structure of the climate variables in physical space,
one may be able to give a physical interpretation to the
observed variability. Thus analysis of the orbit structure
of a dynamic system is very important part of phase
space analysis that may lead to further understanding
of the nature of the underlying system, such as the di-

mensionality, aperiodicity, regime behavior, phase lock-
ing, etc.

4. Phase space representation

a. The ST-EOF basis

From all the ST-EOF components, we found that the
first three leading PCs are the most relevant to ENSO
dynamics in space scales and timescales. Figure 4 gives
their spatial patterns at time lag 11, 8, 4, and 0 months,
respectively. The ST-EOF patterns are basically space–
time correlated structures of the physical reality. In the
present context, they are used as an orthogonal basis
for the phase space where the ENSO signals sit. For
convenience, the ST-EOFs will be denoted hereafter by
V 5 (y 1, y 2, y 3). The corresponding ST-PCs, denoted
by Y 5 (y1, y2, y3), are derived by substituting A in (2)
with V.

The first ST-EOF (y 1) reflects the mature phases of
the ENSO life cycle. The westward propagation of SST
anomalies is a common feature of the majority of the
basinwide warm and cold episodes. Scrutiny of the
equatorial SST anomalies across the basin indicates that
among the 13 warm events during the period 1950–97,
there are only two with SST anomalies propagating east-
ward (1963 and 1982–83) and two stationary (1986–87
and 1991–92), whereas the other events show evident
westward propagation (Wang 1995b). The derivation of
the canonical ENSO warming in Rasmusson and Car-
penter (1982) was based on six major El Niño episodes
during 1950–77 that exhibit dominant westward prop-
agation: the SST anomalies shift from the far eastern
equatorial Pacific on the onset phase (boreal spring of
El Niño year) to the central equatorial Pacific on the
mature phase (boreal winter of El Niño year). Figure
4a shows that y 1 is dominated by a positive SST anomaly
along the eastern and central equatorial Pacific while
the center of anomaly travels slightly westward with
time. The corresponding ST-PC (see Fig. 5a) coincides
very well with El Niño or La Niña years for maximum
or minimum y1, which is highly correlated with the re-
gional mean monthly SST over eastern equatorial Pa-
cific (cf. Fig. 2, solid line). Thus the evolution of y 1,
apparently associated with the mature phase of El Niño
and La Niña, agrees well with the canonical ENSO and
reflects the dominant feature in phase propagation of
the El Niño–La Niña episodes that occurred in the 48-
yr records.

The second ST-EOF (y 2) represents the transition
phases of the ENSO life cycles. In contrast to y 1, y 2

(see Fig. 4b) is characterized by a reverse of sign in the
SST anomaly: the positive anomaly in the equatorial
central Pacific at time lag 11 months travels westward
and at the same time declines in intensity; soon after it
has disappeared at lag 6, a negative anomaly center
appears off the Ecuador coast. The latter then intensifies
with the size of the anomaly center expanding westward
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FIG. 5. The first three leading ST-PCs (y1, y2, y3) derived from the projection of the monthly tropical Pacific SST (after seasonal cycles
and interannual trends are removed) onto the corresponding ST-EOFs in Fig. 4. The right panel shows their power spectra.

all through lag 0. Apparently, y 2 reflects the change in
the ENSO cycles from a warm to a cold phase, when
y2 is positive and vice versa. This can be confirmed
from the phase delay of y2 relative to that of y1 (Fig.
5), which can also be seen from the lag correlation
shown in Fig. 6a. The time series of y2 exhibits the same
characteristic period as y1, as shown by their power
spectra (Fig. 5, lower panel). The difference between y1

and y2 lies in that the evolution of the latter involves a

substantially shorter timescale, implying that the tran-
sition phases are much quicker than the mature phases.

The third ST-EOF (y 3) is associated with the inter-
decadal variations of the ENSO signals. Figure 4c shows
that y 3 displays a distinctive spatial pattern with a com-
plex time change. The complex evolution pattern of y 3

may be conveniently decomposed into three compo-
nents: one stationary and two transients. The stationary
component consists of a positive SST anomaly of a
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FIG. 6. (a) Autocorrelation of y1 (solid line) and its cross-time-
lagged correlations with y2 (dashed line) and y3 (dotted line). (b) The
cross-time-lagged correlations between y1 and y3 calculated based on
data before (dashed line) and after (dotted line) 1977.

horseshoe shape, emanating from the equator near the
date line to the North and South American coasts, re-
spectively. This component is nearly symmetric about
the equator and persists all the time during the 12-month
period of the time window. Superposing on this sta-
tionary horseshoe pattern are the two transient com-
ponents: the first transient component is antisymmetric
about the equator. This one has a large amplitude to the
north wing that intensifies and expands equatorward
during the 12-month course, and by lag 0 a prominent
positive center forms in the equatorial central Pacific.
The second transient component is trapped in the equa-
torial Pacific, characterized by a negative SST anomaly
in the equatorial eastern Pacific that persists in the first
5 months, then decays while moving eastward, and is
finally replaced by a positive SST anomaly. For con-
venience, we will refer the three components as the
stationary, antisymmetric, and eastward components, re-
spectively. The transient antisymmetric and equatorial
eastward components describe the anomalous onset of
the ENSO; its function depends on the phase relation
with y2, that is, whether y3 is nearly in or out of phase
with y2. We shall show later that this is an important
part of the interdecadal variabilities.

The interdecadal variability is not much related to the
interannual linear trend, as the latter, when there would

be any in the data, is removed from the SST time series
(see section 2). Therefore, by looking at the time series
of y3 (Fig. 5, the third panel from the top) or its power
spectrum (Fig. 5, lower panel), it is hardly convincing
that y 3 related with the interdecadal components of the
ENSO variability, although y3 displays more or less larg-
er-scale variations superposed with fluctuations relevant
to the typical ENSO timescale (seen also its spectrum).
The interdecadal variability becomes apparent only
when examining the phase relation of y3 with y1 and y2,
and the changes in the typical ENSO life cycle, the
intensity, and the frequency of its occurrences (inter-
mittency; see section 5c).

The interdecadal component is particularly associated
with the stationary horseshoe anomaly (Wang 1995a),
which is similar to the decadal shift around 1977 found
in Nitta and Yamada (1989). Figure 6b gives the cross-
time-lagged correlation between y1 and y3 using data before
and after 1977. Note that there is a significant difference.
This will be discussed in more detail in section 5c with
respect to regime behavior of the ENSO variability.

The other two transient components display an evo-
lution on the typical ENSO timescale, consistent with
the shorter dominant timescales, as are observed from
y3 or its power spectrum (see Fig. 5). On this timescale,
y3 leads y1 by about 11 months (Fig. 6a). In contrast,
the correlation with y1 leading y3 is rather insignificant
and, if any, at shorter lead time. On the other hand,
significant correlation can be observed between y2 and
y3 on the typical ENSO scales. However, this relation
displays an in-phase and out-of-phase change on the
interdecadal scales. On average, y2 and y3 are in phase
before 1977 and out of phase after 1977.

Therefore, given the decadal change in y3, it is clear
that, after 1977, the onset of the ENSO involves an
equatorward propagation that is more tied to the North-
ern Hemisphere SST anomalies toward the equatorial
central Pacific. The pre-1977 ENSO has mostly just the
opposite transient components whereby the westward
propagation along the equator described by the first two
ST-EOF modes is enhanced. These features reveal the
change of ENSO onset characteristics on interdecadal
timescales. The results here are in harmony with the
findings of Wang (1995a), who showed the difference
in the onset phase of ENSO before and after 1977.

b. Phase–space representation

The foregoing discussions about the characteristics of
the ST-EOFs help establish a connection between the
dynamics of the ENSO signals in physical space and
their phase space representation. The time evolution of
the ENSO-related SST, which is reflected by a contin-
uous change of its space–time structure in physical
space, corresponds to a trajectory in the three-dimen-
sional phase space spanned by V 5 (y 1, y 2, y 3). It should
be pointed out that the choice of these three coordinates
has nothing to do with an arbitrary truncation of the ST-
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FIG. 7. (a). Phase portrait of the ENSO signal on (y 1, y 2) plane,
obtained by plotting y1 against y2 (Fig. 5). Marked are the positions
representing four typical phases of ENSO time evolution A → B →
C → D → A. (b). The same as (a) except on the (y 1, y 3) plane.

EOFs. The basic principle for such a choice is that they
describe the same manifolds containing the ENSO sig-
nals. The above analysis in physical space has provided
evidence for these three ST-EOFs being the basis for
the subspace that describes the ENSO dynamics. Further
evidence can be derived from the relationship between
ST-PCs. Figure 6a gives the autocorrelation coefficient
(solid line) of y1 as well as its cross correlation with y2

(dashed line) and y3 (dotted lines) as a function of lead
time. Indeed, significant correlation is observed between
y1 and itself at time lag (lead) of 2 yr (about half of the
average ENSO life cycle) and with other two compo-
nents at a time lag (lead) of about 6 months to 1 yr,
indicating a time shift of about a quarter of the averaged
ENSO cycle. In particular, the time-lagged cross cor-
relation between y1 and y2 shows a nearly perfect sine
function within one life cycle of the ENSO, as is ex-
pected from a typical wave motion with intrinsic ape-
riodicity. Moreover, the time shift between y1 and y2 is,
in fact, shorter than a quarter of the typical ENSO life
cycle because the mature phase takes a longer time than
the transition phase (see Fig. 6, dashed line). Accord-
ingly, the orbit structures of the trajectory in the phase
space spanned by these two ST-EOFs, shown in Fig. 7a,
display a regularity that is expected from a typical wave
motion in physical space. However, this regularity is
comparable to a linear wave in terms of symmetry only
within one ENSO life cycle because each cycle here is
different from the others, a typical feature inherent to
the irregularity of the ENSO dynamics (see section 5c
for details).

There is an apparent asymmetry of the cross-lagged
correlation between y1 and y3 with respect to 0 lag (Fig.
6a): the maximum correlation occurs between time lag
20 and 10 months while there is no significant corre-
lation with time lead. We found that this is related to
the interdecadal change or regime behavior of the
ENSO. To understand this, Fig. 6b gives the same cor-
relation function as Fig. 6a for y1 and y3 except that the
calculation is based on data before (dashed line) and
after (dotted line) 1977. Note that there is an apparent
difference: before 1977, the ENSO evolution is domi-
nated by normal westward propagation and the contri-
bution from y 3 is not significant, as the couple (y 1, y 2),
together with their ST-PCs, describe the normal ENSO
time evolution. Apparently, the eastward propagation of
the SST anomaly during 1982–83 is associated with y 3,
as reveal by the correlation pattern between y1 and y3

in Fig. 6b, which is consistent with the foregoing anal-
ysis in physical space. This asymmetry is also reflected
in the orbit structure of the trajectory in the three-di-
mensional phase portrait, as shown by its two-dimen-
sional projection onto the plane spanned by y 1 and y 3

in Fig. 7b. The trajectory evolves mostly above the plane
y3 5 0 but rarely goes far above. However, it may have
large excursions below the plane occasionally. This hap-
pened, for instance, during the periods of 1974–75 and
1982–83, when extraordinary La Niña and El Niño

events occurred. In both cases, the amplitude of y3

reaches the minimum. However, they belong to different
regimes of the interdecadal changes (see Wang 1995a
and section 5c).

To summarize, the first two ST-EOFs (Fig. 4) with
their clear indication of phase shift of p/2, and their
associated ST-PCs (Fig. 5), with time shift of a quarter
of the typical ENSO life cycle, describe a westward
propagation of the SST anomaly associated with El Niño
and La Niña in the development of warm or cold epi-
sodes (Fig. 7a). This is a dominant feature for most of
the ENSO events, especially before 1977. The SST
anomaly associated with the events after 1977 is pri-
marily stationary or has an eastward propagation (1982–
83). The y 3 contains a structure with both symmetric
and antisymmetric components. These three ST-EOFs,
together with their ST-PCs, do give a full picture of the
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evolution of the SST anomaly associated with the ENSO
life cycle, and adding more EOF modes does not provide
significant new information. Thus we conclude that a
three-dimensional phase space suffices to explain the
regularity and aperiodicity of the observed ENSO dy-
namics. In order to show that the primary features of
the observed ENSO are indeed contained in this three-
dimensional phase space, we have reconstructed a Hov-
möller diagram along the equator based on these three
ST-EOFs and ST-PCs, as in Fraedrich et al. (1993). It
is found that the propagation of the SST anomaly in
physical space is faithfully represented compared to the
observed, in particular, with respect to the westward
propagation of the normal El Niño evens and the east-
ward propagation of the special event during 1982–83.

c. Dimensionality of the ENSO signals

Wang and Fang (1996) demonstrated that the Cane–
Zebiak (Zebiak and Cane 1987) coupled ocean–atmo-
sphere model essentially consists of only two prognostic
equations: the mixed-layer thermodynamics equation
for SST and the thermocline depth equation for upper-
ocean dynamics. Along with the SST–gradient-wind re-
lation and the wind–equatorial upwelling relation, they
compose a closed coupled system. By considering only
the largest-scale, equatorial symmetric, standing basin
mode, the coupled system reduces to a minimum dy-
namic system, comparable to the Lorenz model (1963),
which highlights the cyclic, chaotic, and season-depen-
dent evolution of ENSO. They show that for a steady
annual mean basic state, the dynamic system exhibits a
unique limit cycle solution for a fairly restricted range
of air–sea coupling. The limit cycle is a stable attractor
and represents an intrinsic interannual oscillation of the
coupled system. The deepening (shoaling) of the ther-
mocline in the eastern (western) Pacific leads eastern
Pacific warming by a small fraction of the cycle, which
agrees well with observations. When the basic state un-
dergoes an annual variation, the limit cycle develops
into a chaotic attractor and the inherent interannual os-
cillation displays a low-order deterministic chaos. On
the other hand, the transition phase of the oscillation
tends to frequently occur in boreal spring when the basic
state is most unstable. It was argued that the season-
dependent coupled instability may be responsible for
the tendencies of ENSO phase locking to the annual
cycle and period locking to the integer multiples of the
annual period that, in turn, generates irregularities in
the oscillation period and amplitude. Using SST time
series derived from the Cane–Zebiak model, Tziperman
et al. (1995) found that the irregularity of the model
ENSO cycle can be explained by the existence of a
strange attractor with a fractal dimension (specifically,
correlation dimension) of 3.5. The nonlinear time series
analysis performed by Chang et al. (1995) reveals that
the fractal dimension of their model ENSO dynamics
is about 5.2. Both studies suggest that in these models

the irregularity of ENSO is governed by low-order cha-
otic processes. In an attempt to examine a possible ex-
istence of strange attractor for ENSO, Hense (1986)
used precipitation at Nauru, SST at Pueto Chicama, and
sea level pressure at Darwin to estimate its fractal di-
mension. Due to the limitation of data both in quantity
and in quality, the estimates may not be accurate or
reliable (Smith 1988; Eckmann and Ruelle 1992; Frae-
drich and Wang 1993). Nevertheless, his estimate of
fractal dimension was between 2 and 6.

Thus both statistical estimates and dynamic model
studies suggest that the underlying dynamics of ENSO
signal is a low-dimensional attractor. It may not be plau-
sible to estimate the exact dimensionality based on ob-
servational data (Smith 1988; Eckmann and Ruelle
1992). Our analysis in the previous section indeed in-
dicates that a three-dimensional phase space seems to be
sufficient to describe the ENSO signals. In many practical
instances, it is often not necessary to know the exact
number of a fractal dimension. Instead, it is more im-
portant to know the minimum number of coordinates, the
so-called embedding dimension, to sufficiently describe
the time evolution of the system for theoretical as well
as practical purposes, such as the issues of prediction.

5. Phase space characteristics

a. ENSO life cycle

Figure 7 shows that El Niño and La Niña represent
the opposite phase of the same wave motion with their
mature phases occupying, respectively, the positive and
the negative ends of the abscissa (y1). From the ST–
EOF patterns (Fig. 4) we can see that there is a one-to-
one correspondence between the direction of the prop-
agation of the SST anomaly in physical space and the
speed with which the trajectory rotates around its center
(the climate mean) in the phase space (see, e.g., Wallace
et al. 1993; Wang et al. 1995). Thus each orbit of the
rotating trajectory represents one life cycle of the
ENSO. Although each cycle is different, we can portrait
the mean life cycle of the ENSO by composite maps of
all those monthly SSTs (from different years) that are
found in the neighborhood of each typical phase indi-
cated by small circles in the two-dimensional phase
space (Fig. 7a). Note that we did not consider y 3 in the
searching for the neighbors, as y 3 (and y3) represents a
variability not typical to the ENSO life cycle (see Figs.
4 and 6).

Figures 8a–d show the resulting composite phases in
physical space representing the transition from El Niño
to La Niña (A), the mature phase of La Niña (B), its
transition to El Niño (C), and the mature phase of El
Niño (D), respectively. The circle (A → B → C → D
→ A) gives an ideal picture of the basic evolution of
the ENSO life cycle for which any successful dynamic
model should be able to reproduce, including the typical
wave motion with no particular sign of symmetry of the
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FIG. 8. The SST anomaly associated with the four typical ENSO phases derived from the composite maps of the monthly
SST anomalies that fall in each of the four neighborhoods indicated in Fig. 7, representing four different phases of El Niño–
La Niña evolution.

opposite phases (Fig. 8). Note that the mature phase of
El Niño features two positive SST anomaly centers: one
is located in the eastern Pacific (1058W) and the other
in the central Pacific (1608W).

b. Phase locking to the annual cycle

The second feature of the ENSO dynamics is its phase
locking to the annual cycle (Rasmusson et al. 1990).
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FIG. 9. The same as Fig. 7 except that the positions for each month of each year in (a) autumn (SON), (b) winter (DJF), (c) spring
(MAM), and (d) summer (JJA) are marked in order to show the phase locking to the annual cycle and their seasonal changes (see text).

This is most clearly revealed in Fig. 9, which is the
same as Fig. 7a but marked with the position of each
month for each year (see also Fig 3). Note that Figs.
9a–d give the position of the months in spring, summer,
autumn, and winter, respectively. For instance, Fig. 9a
is marked with the location of March, April, and May
on the trajectory to show if there is a preferred clustering
of the states according to season due to the phase locking
to the annual cycle. It is apparent that the phase locking
occurs only when the ENSO signals are relatively
strong. In contrast, no preference of seasonal distribu-
tion can be observed when the ENSO signal is weak,
that is, when the SST distribution is close to climate
mean (ST-PCs ; 0). There is a spring preference in the
transition phases (Fig. 9a). The most apparent phase
locking occurs in boreal autumn–winter seasons (Figs.
9c,d, particularly in boreal autumn months) for both
warm (El Niño) and cold (La Niña) events. Note that
the phase locking often occurs in opposite phases along

a straight line, differing by 1808 of phase angle or half
of the typical ENSO life cycle, which gives rise to the
biennial component of the ENSO cycle observed in Ras-
musson et al. (1990).

c. Irregularity

The phase portraits (see Figs. 3 and 7) show two basic
features of the orbit structure. First, the center of orbits
changes its position from one orbit to another. This is
often associated with the regime behavior that gives rise
to variabilities with timescales longer than a typical
ENSO life cycle. The observed interdecadal variability
in y3 is not independent from this regime behavior. Sec-
ond, each orbit (ENSO life cycle) differs from the other
in terms of intensity, phase locking to the annual cycle,
and phase speed (equivalent to SST anomaly propa-
gation in physical space). Thus the ENSO variability is
characterized by both periodicity (different from Ran-
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FIG. 10. First return map obtained by plotting a local maximum of ST-PC1 (see Fig. 5) against its next as well as the local minimum
against the next minimum. Both are equivalent to a Poincaré section. For comparison, the same map derived from the Lorenz model is given
in the upper-left corner, as in Fig. 11.

dom processes) and irregularity (similar to random pro-
cesses). This structured variability, often referred to as
aperiodicity to distinguish from randomness, can con-
veniently be quantified in terms of phase space repre-
sentation.

To study the regime behavior, one needs to calculate
the probability density distribution or Poincaré section.
This is too hard a task for the present study due to the
limitation of data. We can gain some qualitative knowl-
edge based on the above observation about the regime
behavior. For a supplementary evidence, we tentatively
give the first return map of the ENSO signal in Fig. 10
obtained by plotting a local maximum of the y1 against
its next maximum. This is equivalent to a Poincaré sec-
tion showing whether there is a preferred clustering of
the orbits of the trajectories. Albeit the limited number
of orbits, Fig. 10 seems to indicate that there is a pre-
ferred distribution of the orbits, in contrast to random
processes. However, the distribution is more complex
than a typical theoretical low-dimensional model, such
as the Lorenz (1963) model, which is given on the upper
left corner of the figure for comparison. This situation
seems to be typical of reality, which gives the hope and,

at the same time, the limitation for some practical issues
such the ENSO prediction.

To quantify the properties associated with the ENSO
activity and phase propagation, we calculated the am-
plitude of the wave intensity defined by the radius of
the orbit (r 5 ( 1 )1/2) and the phase speed (u 52 2y y1 2

df /dt), where f is the phase in degree with respect to
the initial position f 5 08. Details about the method of
calculation are referred to Wallace et al. (1993) and
Wang et al. (1995). Figure 11a (upper panel) shows the
results: the ENSO intensity displays an apparent irreg-
ularity, similar to intermittency, whose gross feature is
quite comparable to the well-known Lorenz model
shown on the upper left corner of the figure (see Lorenz
1963 for details). The calculation is based on two-di-
mensional (dashed line) and three-dimensional (solid
line) phase spaces. Note that inclusion of y3 does not
influence the qualitative feature of the ENSO intensity,
implying that y 3 is not essential to the typical ENSO
life cycle, but more related to the changes among the
life cycles, typically, the interdecadal changes. There
seem to be both regime behavior and intermittence as-
sociated with the interdecadal changes: for instance,
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FIG. 11. (a) Intensity of the ENSO activity defined as the radius of the trajectory in the two-dimensional [(y 1, y 2), dashed line] and three-
dimensional [(y 1, y 2, y 3), solid line] phase space, respectively. (b) The phase position (in degrees) of the ENSO state in the (y 1, y 2) plane
(see Fig. 7a). Marked are the positions for each September in order to show the phase locking for each ENSO life cycle.

from 1970 to 1976 there are intensive ENSO signals (El
Niño–La Niña events), followed by a period (1977–81)
when there is almost no signal. For convenience, a pe-
riod with almost no ENSO signal is referred here as a
‘‘quiet period.’’ A long and extraordinarily quiet period,
such as the first halves of the 1970s and 1990s, is often
followed by a burst of drastic single El Niño event, such
as those in 1982–83 and 1997–98. A shorter quiet period
often preludes relative weaker ENSO signals, resulting
in more frequent occurrences of the El Niño–La Niña
events, such as the period from the mid-1960s to the

mid-1970s. These qualitative features are in agreement
with the observations from the wavelet analysis results
(Wang and Wang 1996).

The phase propagation, together with the position of
September each year, is shown in the lower panel of
Fig. 11 by plotting the phase position in degree (f ) for
each ENSO life cycle (08 # f # 3608). The position
of September serves as an indicator about the number
of annual cycle within each ENSO life cycle. September
is chosen to be the indicator here because this is the
month during which the eastern Pacific cold tongue of
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SST reaches its maximum (e.g., B. Wang 1994). The
phase speed (u) is measured by the slope of the f curve
for each cycle. Three basic features can be detected as
follows.

First, the phase propagation changes from cycle to
cycle and there is almost no smooth propagation. Ap-
parent stalls can be observed for most of the ENSO life
cycles (11 out of 15).

Second, the typical life cycle of the ENSO is, in fact,
dominated by a period of 4 yr. There are cycles when
the period is 2, 3, or 5 yr. The biennial cycle (2–3 yr)
appears to be significant in mid-1960s (Fig. 11b). Those
observed in the late 1970 is not typical, as this is the
quiet period of the ENSO signal (see Fig. 11a). Apart
from these two periods, the majority of the ENSO cycles
are 4 yr. In this sense, the biennial component observed
in spectral analysis may simply come from a subhar-
monic of the 4-yr ENSO life cycle. In particular, the
mature phases tend to be locked to boreal winter and
the associated transition phases are rapid. These two
features combined together may lead to an ‘‘apparent’’
biennial peak in spectral analysis. A typical example is
the event in 1982–83 when the warm phase developed
in May 1982 and decayed July 1983. Figure 11b shows
that this component is only a part of the ENSO life
cycle. Here one may need to distinguish the different
types of biennial components: the component that is a
part of the ENSO signals and the component observed
during the quiet periods. The latter component may be
due to the influences from some other sources of var-
iabilities such as the biennial variability of the tropical
circulation system, in particular, the monsoon variabil-
ity. The classic spectral analysis cannot tell these dif-
ferences.

Third, the stall of propagation has a preferred phase
positions and seasons. This is related in part with the
phase locking to the annual cycle, which becomes im-
mediately apparent when one examines the phase dis-
tribution of the Septembers: about one-half falls in the
narrow range of 3408–908. The other half tend to fall
in 1008–2008 for the pre-1970 epoch and 2008–3008 in
the post-1970 period. These again are related to the
regime behavior of the ENSO dynamics and its inter-
decadal changes.

6. Concluding remarks

The foregoing analysis leads to the conclusion that
the essential part of the observed ENSO variability is
equivalent to a low-dimensional attractor, as contrast to
pure stochastic processes. The three-dimensional basis,
(y 1, y 2, y 3), derived from the ST-EOFs of the monthly
mean SST of the tropical Pacific, can effectively de-
scribe the basic features of the observed variability, such
as the irregular oscillation, the phase locking to the an-
nual cycle and the interdecadal variations in its prop-
agation and onset. Adding further dimension does not

increase any significant new information about the un-
derlying dynamics.

The phase–space analysis of the ENSO variabilities
reveals that El Niño and La Niña are two extreme phases
of the same phenomenon with a typical life cycle of
about 4 yr, referred to as the ENSO signal. The mature
phases tend to occur in boreal winter and the associated
transition phases are rapid. The phase locking to the
annual cycle took place only when ENSO signals are
relatively strong while the most significant phase lock-
ing occurs in boreal autumn and winter. All these factors
leads to an apparent biennial peak in spectral analysis.
However, there is another biennial component observed
during the periods when there are no ENSO signals or
the ENSO signals are very week, that is, the quiet pe-
riod. This biennial component has a very different origin
as that of the ENSO signal. The classical spectral anal-
ysis cannot distinguish these two different components.

There is a preferred distribution of the orbits of the
ENSO signals in contrast to random processes. Thus the
variability of the ENSO signals is apparently structured
but changes from one life cycle to another. The intensity
and the frequency of occurrences of the El Niño–La
Niña events display an irregularity with the regime be-
havior and intermittency comparable to the Lorenz
(1963) set, which constitutes the major part of the ob-
served interdecadal variability. The physical aspects of
interdecadal component, represented by y 3 and y3, dis-
play the same characteristics as discussed in Wang
(1995a). Our analysis shows that the interdecadal var-
iability is a complex regime behavior reflected by the
onset of the ENSO events (phase relation of the three
ST-PCs), the length of the ENSO life cycle, the inter-
mittency, and the ENSO intensity (Fig. 11).

Regarding the above conclusion, we should like to
make the following comments. First, the existence of a
low-dimensional phase space for a complex system is
the key to the conceptual understanding of the under-
lying dynamics and possibly leads to effective predic-
tion of its long-time behavior. However, direct estima-
tion of dimensionality, which requires a large quantity
of data with good quality (Smith 1988; Sauer et al.
1991), is often less plausible when dealing with ob-
served physical systems. In practice, we may not need
to know the fractal dimensions when dealing with dy-
namic systems of the physical reality. It may be indeed
more useful to know the minimum number of coordi-
nates that can effectively describe the observed varia-
bilties. Therefore, the conclusion regarding the dimen-
sionality of the El Niño–La Niña is based on the physical
insight derived from observational studies and the the-
oretical models of the underlying system rather than
from estimating the fractal dimensions. On the one hand,
three-dimensional basis is indeed able to capture the
observed features. On the other hand, the dynamic sys-
tem models (Wang and Fang 1996) and the coupled
numerical model results (Tziperman et al. 1995; Chang
et al. 1995) also suggest that the basic dynamics gov-
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erning the evolution of the ENSO signals is a low-di-
mensional chaotic attractor. Thus, the ENSO signals
provides an example of a complex system of the coupled
ocean and atmosphere generating relatively simple dy-
namics in terms of a low dimensionality.

Second, the phase space analysis of such a low-di-
mensional system can often reveal the detailed structure
of the observed variabilities of the ENSO signal: its life
cycle and its irregularity. This implies that any numer-
ical model should be able to recreate both the observed
low-dimensional attractor and the observed structures
and dynamic behavior, if they have the right physics.
Comparison of the classic statistic quantities, such as
means, variances, correlations, and spectra, may be in-
sufficient to validate a numerical model.
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