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Abstract

Fast barotropic gravity waves in the ocean require that an efficient computational method is applied in ocean models used for
climate simulations. The gravity wave retardation (GWR) method is a simple technique that slows down surface waves and
allows a simple explicit integration to be used. Here the method is discussed and applied to a layer model of the tropical Indian
Ocean subject to monthly climatological wind forcing. The errors introduced by the GWR method on the barotropic ocean
circulation and sea surface elevation are analyzed. Comparison to a model integration with a flat bottom demonstrates that
GWR integrations with a speed-up factor up to 16 indeed capture some influence of the bottom relief, in the sense that the GWR
solutions have less error than if topography was ignored. Integrations with a speed-up factor of up to 8 are found to model the
barotropic circulation well, implying that the GWR method can be applied to climate modelling.

© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

State of the art climate modelling requires long
integrations of ocean models with relatively high re-
soluion. This demands very powerful computing re-
sources, most easily provided by massively parallel
computers. To take advantage of these resources, a
code must be very close to 100% parallelized, which
limits our choice of suitable algorithms. When based
on the equations of an incompressible fluid, the
fastest propagating waves in an ocean general circu-
lation model (OGCM) are long gravity waves. They
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propagate with phase speeds exceeding internal
modes by two orders of magnitude, and provide
adjustment to geostrophically balanced flow at a time
scale much shorter than those of interest in climate
modelling.

Oberhuber (1993) applied a semi-implicit method
to an isopycnal OGCM for all layers, but more
commonly, a separation into barotropic and baro-
clinic modes is made, so that two different algo-
rithms can be applied. The slow baroclinic mode is
usually solved by an explicit time integration
scheme. For the fast mode, an elliptic equation can
be formulated by introducing a streamfunction (e.g.
Bryan, 1969; Semtner, 1986), or by treating the
surface elevation implicitly (Dukowicz and Smith,
1994). With this method, the parallelization problem
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is primarily associated with the barotropic mode.
Many recent models solve the barotropic mode
explicitly by sub-cycling, i.e. using a much smaller
time step for the fast mode to ensure numerical
stability (e.g. Blumberg and Mellor, 1987; Killworth
et al., 1991; Bleck and Smith, 1990; Hallberg, 1997).
In that case, parallelization is easy, but the solution of
the barotropic mode is relatively costly. Bryan (1984)
used accelerated physics to reach a steady solution
for climate models, but this method distorts all waves
and can only be applied for a spin-up of the ocean to
a steady state.

The gravity wave retardation (GWR) method has
been used and analyzed for layer models in simple
basin geometries and for simple forcing fields (Jensen,
1996; Tobis, 1996). More recently, Jensen (2001)
applied the GWR method successfully to a realistic
ocean basin with observed wind forcing and demon-
strated its relatively high accuracy and high efficiency.
However, in Jensen (1996, 2001), the GWR method
was mainly considered an alternative to reduced
gravity models by including effects of bottom top-
ography on the baroclinic modes. Consequently, the
error analysis in those studies focused on the baro-
clinic modes.

In this paper, we will use the same model as Jensen
(2001), but investigate the barotropic response. This is
of particular interest for OGCMs for climate model-
ling, since the GWR method easily can be applied to a
sub-cycled barotropic mode to save significant com-
puter time. In fact, Hearn and Hunter (1987) and
Hunter (1990a,b) used the equivalent of this method
to spin-up barotropic ocean models on an f-plane to
investigate flows in coastal regions subject to steady
wind forcing.

2. The GWR method

The method works by slowing down the phase
speeds of the barotropic gravity waves. Hearn and
Hunter (1987) simply reduced the gravitational con-
stant since they applied it to a homogeneous sea,
while Jensen (1996) extended the method to the
stratified case and demonstrated the analogy of the
GWR method to the method of artificial compressi-
bility (Chorin, 1967) by introducing a simple mod-
ification of the continuity equation. In a layer model,

this results in a multiplication factor y to the surface
elevation 7 in the pressure gradient term:

Vpi=g (Vp,-Vn ~Sltoy - Pi)VHi]> ’ (1)

i=1

where g is the constant gravitational acceleration, p;
is the density, and H; is the thickness of layer ;.
Phase speeds of barotropic gravity waves are
changed by a factor of the square root of y, allowing
an increase in time step by a factor of I' = \/m for
an explicit integration. Details of the derivation are
given in Jensen (1996). We will refer to y as the
GWR parameter and to I' as the GWR speed-up
factor.

An appealing interpretation of how the method
works was suggested by Cushman-Roisin (personal
communication, 1996). By increasing the air density
above the ocean, the effective gravity at the air—sea
interface is only a fraction of its physical value. This
affects all waves, but primarily ocean surface waves,
which become internal waves in the modified atmos-
phere—ocean system. The equivalence of the GWR
method to this modified physical system is only exact
for a homogeneous ocean, but is closely related in the
stratified case as shown below.

3. Pressure gradient in a layered fluid

Consider a fluid with N+ 1 isopycnal layers in the
vertical and a free surface #(¢, 0) and the bottom
at — D(¢, 0), where ¢ is the longitude and 0 is the
latitude (Fig. 1). The hydrostatic pressure in the upper
layer (layer 0) is given by:

po(z) = —gpoz (2)

where the height z of a density surface is negative in
the fluid and zero at the surface #. A deeper layer j has
its upper boundary at:

j-1

2 =— Y H (3)
i=0

so we find:

pi(z) = pj-1(zy) — gp;(z — z1y) (4)
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Fig. 1. A general layer model with a free surface and bottom
topography confined to the deepest layer.

where the pressure at the top of layer j equals the
pressure at the bottom of layer j — 1, e.g.:

j-1
piilzy) = > gpHi. (5)
i=0

We need to find the horizontal pressure gradient,
vertically integrated over each layer. In a z-coordi-
nate system, it is straightforward to integrate first
and then use the Leibnitz formula to obtain this
quantity. However, if we keep in mind that the
density coordinate varies in the horizontal direction
so that:

Vz=-Vy=-V i(m - D) (6)

i=0

where the gradient is along constant density surfa-
ces, we find, taking the gradient of Eq. (4) and
inserting the definitions of Egs. (3) and (5):

j—1
Vpi=g|pVn—=V> (p,— p)H;|. (7)
i=0

4. Modified atmosphere—ocean system

Applying Eq. (7) to a system with an atmosphere
with density po= p, and thickness Hy= H, over a two-

layer ocean with densities p; and p, and layer thick-
nesses H; and H,, respectively, we find for the
atmosphere:

Vpa = gp. Vi, (8)
for the upper ocean:
Vp1 =glpiVin = (p1 — pa) VL] ©)

and for the deeper ocean:

Vp2=glpsVii—(py — pa) VHa—(py — p1 )VH;]. (10)

The gradient of the elevation at the top of the at-
mosphere is given by:

Vn=V(H,+H +H,— D) =VH,+Vy, (1)

where we have defined a sea surface elevation 7,
assuming that the topography is confined to the ocean.
Assuming a rigid lid (#=0) on the top of the atmos-
phere gives:

VH, = -V, (12)

and the equations for the ocean become for layers 1
and 2, respectively:

Vp1 = g(p1 — pa) Vi (13)
V2 = g(py — pa) Vs — g(p2 — p1)VH;. (14)

For an unmodified atmosphere—ocean system, we
have p,<<p;, and Eqgs. (13) and (14) are given by Eq.
(1) with y=1. We also note that using y=(p, — p¥)/p,
in Eq. (1), where p, is a reference density for seawater
and p¥ is an artificially increased air density is closely
related, but not identical, to increasing the air density.
The latter corresponds to choosing a slightly different
y for each layer in Eq. (1), i.e.:

Vi = (Pj_p;k)/Pj- (15)

5. Relation to reduced gravity models

Decreasing y in GWR models reduces the effective
gravity in a way similar to reduced gravity models: in
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Eq. (1), the gradient of the surface elevation can be
written as the gradient of the sum of all layer thick-
nesses, i.e.:

Vn:zN:VHi. (16)

i=1

Reduced gravity models have a surface gradient
forcing term given by:

Vi :g(uﬁm, (17)

i=1 PN

(Jensen, 1991, 1996). The latter is equivalent to using
a depth-varying value of y that is proportional to the
density difference between each layer and the deepest
layer. Substituting Eq. (17) for yV# in Eq. (1) it is
seen that the pressure gradient vanishes in the deepest
layer, N, and the pressure gradients in the layers above
are identical to those in a reduced gravity model. A
reduced model is therefore a special case of a GWR
model.

6. Range of values for the GWR parameter y

It was shown in Jensen (1996), using the linear
system of equations, that the equivalent depths for the
modified system are found as eigenvalues to the
matrix:

aji = [V—1+M]H0/, (18)

and the eigenvectors give the vertical structure of the
flow. The subscript 0 indicates that a basic state at rest
is used for this calculation. While the eigenvalues for
the general case must found by a numerical solution,
we can illustrate how the method works for the two-
layer ocean with a density difference of Ap between
the lower and upper layers. If we chose to write the
two-layer system as Hy =oH and Hp=(1 —o) H,
where 0<a<1, we find from Eq. (18) that the two
eigenvalues are:

1
pOD ZEyH(lix/l —b), (19)

where:

b:4Apoc(l—oc)7 (20)
Py

and the phase speeds are given by:

0D = /ghOD), (21)

Here the superscripts 0 and 1 refer to the barotropic
mode and the baroclinic mode, respectively. For
propagating solutions, the eigenvalues must be real,
that is the term under the square root must be positive,
i.e. b<1. In the case of 51, we can expand the
equivalent depths in Taylor series as:

W =yH(1 —1/4 b—1/16 b*) + O(b) (22)
and
=80 s 18 B 4 oY),

(22)

We note that to first order the phase speed of the
barotropic mode is changed by a factor of /7, while
the baroclinic mode is unchanged. The higher order
terms imply that the baroclinic mode in a GWR
solution will have a slightly increased phase speed
compared to the y=1 case.

A special case is y=Ap/p, where Eq. (19) can be
solved exactly:

Ap

:%(l—oc)H; h'=""oH. (23)

P P
One phase speed, ¢”, becomes identical to that of a
bottom boundary layer in an infinitely deep ocean,
while the phase speed of the other mode becomes the
same as found for a finite upper layer over an infinitely
deep ocean. As far as phase speed is concerned, wave
propagation has been replaced by two independent
(baroclinic) reduced gravity wave solutions.

In the general case, the GWR parameter must be
chosen sufficiently large that the barotropic mode
remains significantly faster than the baroclinic
modes, and so that all eigenvalues remain real. Using
the two-layer case above as guidance, we find that in
practice, ) > Apax/p, where Ap ., is the maximum
potential density difference in the open ocean, can be

hO
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used to determine the maximum possible speed-up
factor while maintaining physical meaningful solu-
tions and numerical stability. Since this density
difference is of order 10 kg/m®, we can expect
stability for a speed-up of an order of magnitude.
Shallow surface layers of relative fresh water can be
ignored since they do not influence the phase speed
of the lowest order baroclinic mode. However, if a
model explicitly includes shallow estuaries, where
the thickness of fresh water outflow is a significant
fraction of the total depth and assuming a density
difference of about 25 kg/m’, the speed-up factor is
limited to a factor of 5-6.

7. Impact on barotropic wave propagation

The effect of the method on the phase propagation
of baroclinic gravity waves has been shown to be
small, about 3—5% for a speed-up factor I" of 10, and
the effect on baroclinic Rossby waves is even smaller
(Tobis, 1996; Jensen, 1996, 2001). Therefore, only
the effect of the barotropic modes will be discussed
here.

Since the GWR method works by slowing down
barotropic gravity waves by an the order of magni-
tude, it obviously cannot be used to model any
process that requires a good representation of their
phase and energy propagation. As the phase speed is
reduced, the barotropic Rossby radius of deformation
is decreased by the same factor. As a result, geo-
strophic adjustment takes place over a much smaller
area with very large surface displacements, and the
increased deformation of the fluid column causes
errors in the solution. The interpretation of surface
waves as internal waves in a modified atmosphere—
ocean system also help our understanding of the large
surface elevations associated with the method. How-
ever, since y and 7 appear only as a product in Eq. (1),
the pressure gradients are fairly accurate, and the
exaggerated surface elevation 7 from a GWR solution
can simply be rescaled by multiplication of 7 to obtain
realistic values (Hearn and Hunter, 1987).

Barotropic Rossby waves are dispersive and the
relative error associated with the GWR method
depends on the wave number. Fig. 2 shows the ratio
of the phase speed in a GWR model to the unmodified
phase speed as function of the wavelength 4, scaled in

1

0.8

0.6

0.4

0.2

0 0.5 1 1.5
Rossby radii

Fig. 2. Ratio of the phase speed of the barotropic Rossby waves in a
GWR solution to the unmodified phase speed as function of
wavelength in units of the (unmodified) Rossby radius of de-
formation. The same curves apply to the ratio of zonal group velo-
city components for barotropic Rossby waves with zero zonal wave
number. Curves are shown for different values of the speed-up
factor I'.

units of the Rossby radius of deformation a for I'=1.
The ratio of kinetic energy density to potential energy
density is (ka)?, where k is the wave number (e.g. Gill,
1982, p. 502), so Rossby waves with ka>1 (or
A<<2m in Fig. 2) are associated with fast, horizontal
motion. Waves with kg <<1 mainly represent changes
in potential energy, and are not represented in Fig. 2.
Recall the barotropic deformation radius is about 2000
km in the open ocean, so ka=1 corresponds to a
wavelength of approximately the width of the Pacific
Ocean. For ka>2m, the barotropic wavelength is
shorter that the external Rossby deformation radius.
Fortunately, most barotropic waves, although the zo-
nal scale may be basin-wide, are generated by weather
systems with a meridional length scale of 1000 km or
less, keeping ka much larger than 1.

The group velocity of barotropic Rossby waves is
more severely affected. Fig. 3 shows the ratio of the
group velocity in the zonal direction for waves in a
GWR model to the exact group velocity in the same
direction as a function of the zonal wavelength scaled
as in Fig. 2. As the speed-up factor I is increased, the
wavelength of the stationary Rossby wave (ka=1)
decreases and the range of wavelengths with eastward
energy propagation is reduced. This means that bar-
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Fig. 3. As in Fig. 2, but for the group velocity in the zonal direction
of barotropic Rossby waves with zero meridional wave number.

otropic waves in the open ocean, which should have
castward energy propagation if ka<1, instead will
propagate energy westward if the GWR speed-up
factor is sufficiently large. From Fig. 3, we note that
waves longer than 1500 km (3/4 of the deformation
radius) will propagate energy westward if I' exceeds

26N

8. Fig. 3 was computed assuming that the meridional
wave number is zero, but usually the zonal wave
number is much smaller than the meridional wave
number. If the zonal wave number is zero, the ratio of
zonal group velocities is identical to the ratio of phase
velocities, i.e. Fig. 2. However, as indicated by Fig. 3,
the relative error may be still be large for waves that
have a group velocity close to zero. The group
velocity in the meridional direction is also affected.
Fig. 2 can be used to obtain the ratio, since it is the
square of the ratio of the phase speeds.

The shortest period of Rossby waves varies with
latitude as

Tinax = @tan(d)) (24)

c
where R is the radius of the Earth and ¢ the gravity
phase speed. Barotropic Rossby waves with monthly
periods can occur everywhere except within a few
degrees of the north pole. However, as the phase
speed is modified by the GWR method, the area
where barotropic Rossby waves with a given fre-
quency can exist decreases. For a speed-up factor of
5, 10, and 16, respectively, the latitude decreases to
55°, 35°, and 25°, respectively. For a bi-monthly
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5900

by 150 m 1250

Fig. 4. Bottom topography for the Indian Ocean model. The minimum depth is 1200 m, the maximum depth is 6000 m, and the contour interval

is 150 m.
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Fig. 5. Annual mean of the basin-wide root mean square (rms) error
for the rescaled surface elevation, yn (circles), depth average of the
zonal velocity component u (plus) and the depth average of the
meridional velocity component v (triangle) as a function of the
speed-up factor I'. The label flat bottom indicates the rms error of
the case of a flat bottom without any change in phase speeds. Units
are mm for surface elevation and mm/s for velocity components.

period, the corresponding latitudes are 70°, 55°, and
40°, so monthly forcing cannot generate barotropic
Rossby waves poleward of these latitudes.
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8. Model and forcing

The ocean model is an isopycnal model in spher-
ical coordinates, and includes mixed layer physics
(Jensen, 1996, 1998). It has a uniform horizontal
resolution of 1/3°, covering the Indian Ocean north
of 30°S and west of 120°E. The model has a free
surface and five layers with bottom topography con-
fined to the deepest layer. The initial thickness is 80,
120, 250 and 600 m for layers 1-4, respectively,
while the thickness of layer 5 varies initially between
150 and 4950 m, with an average of 3000 m. The
densities of layers 1-5 are 1023.6, 1025.4, 1026.5,
1027.2 and 1028.2 kg/m’, respectively. The initial
thickness and density for each layer was determined
using temperature and salinity from the World Ocean
Atlas 1994 (Levitus and Boyer, 1994; Levitus et al.,
1994) as follows: the annually averaged potential
density was computed in the model domain and the
depths of the 1024.0, 1026.0, 1027.0 and 1027.5
isopycnals were determined. These isopycnals sepa-
rate core layers in the Indian Ocean (e.g. Wyrtki,
1971, p. 219). In locations where the resulting layer
thicknesses were less than 50 m, the layers were
increased by moving the interface downward and

31 41 51 61

7

80 20 100 110 120

Fig. 6. Distribution of the annual mean rms error for the rescaled surface elevation y7 for a GWR solution with a speed-up factor of 8. Contour

interval is 0.3 cm. The maximum rms error is 2.6 cm.
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Fig. 7. Distribution of the annual mean rms error for the barotropic zonal velocity component # for a GWR solution with a speed-up factor of 8.
Contour interval is 0.06 cmy/s. The maximum rms error is 1.1 cmy/s.

entraining fluid into the layer above. The spatial The bottom topography (National Oceanographic

averaged depth and density for each layer were then and Atmospheric Administration, 1986) is used without

computed and rounded to the nearest 10 m for layer smoothing, but limited to be between 1200 and 6000

thickness and to the nearest 0.1 kg/m3 for density. m (Fig. 4) in order to keep the topography in the dee-
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Fig. 8. Distribution of the annual mean rms error for the barotropic meridional velocity component v for a GWR solution with a speed-up factor
of 8. Contour interval is 0.06 cm/s. The maximum rms error is 1.6 cm/s.
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pest layer. For simplicity, all lateral boundaries, inclu-
ding the southern and eastern boundaries, are closed.

Wind stress is climatological monthly mean winds
from 1979 to 1988 from the European Center for Me-
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dium Range Forecast (ECMWF) reanalysis. Since the
time resolution of the forcing is coarse, a linear in-
terpolation in time is done to each model time step.
Spatial interpolation was done using bi-cubic splines
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Fig. 9. Barotropic currents and rescaled surface elevation in the Somali Current region on September 15 after 960 days of integration: (a) control
(I'"=1) with flat bottom, (b) control (I'=1), (¢c) I'=8, and (d) I"=16. Solutions in (b)—(d) include full bottom topography. Maximum vector
shown corresponds to 10 cm/s. A few longer vectors in (a) are truncated. Contour interval for the surface elevation is 2 cm. Positive values are
shown with a solid line and negative values with a dashed line. The zero contour is not shown.
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in space, which results in a continuous wind stress
curl field.

Solving for Eq. (18) with the given model strat-
ification results in the phase speeds in Table 1. Note
that the phase speeds for the first mode baroclinic

DAY 1080
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TEeuNNNY
RN

gravity waves are only slightly changed. Higher ba-
roclinic modes are less affected. Also shown is the
ratio of phase speeds for barotropic Rossby waves in a
GWR computation to the unmodified computation for
three different wavelengths.
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Fig. 10. As Fig. 9, but for January 15 and 1080 days of integration.
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9. Experiments

The circulation after 3 years of spin-up is investi-
gated. Although fairly short, this is sufficient for com-
puting errors related to the GWR method. The ocean
model gives a realistic general circulation of the Indian
Ocean as documented elsewhere (e.g. Jensen, 1991,

1993, 2001).

A control run was done without any reduction in
gravity wave speed and required a time step of 45 s.
Runs with values of the speed-up factor, I'=5, 8, 10,
and 12 used time steps of 200, 320, 360, and 450 s,
respectively, while runs with I" values of 16 and 20
used a time step of 600 s. In addition to these runs
which include varying bottom topography, a case with
a flat bottom with the same average depth of 4045 m
and unmodified phase speeds (i.e. I'=1) was com-
puted. Since the effect of topography on the deep flow

128

a

128

is reduced as I’ is increased (Jensen, 2001), a minimum
requirement for a meaningful GWR solution is that the
errors associated with the method are less than for a flat
bottom case. The flat bottom case is numerically stable
for values of I' < 28.86. However, in shallow areas, the
barotropic gravity wave speed decreases, so a smaller
value of I' is required to keep it larger than the
baroclinic phase speed. A stable solution requires
I' <20 to include areas where layer 5 may be of the
order of 10 m.

10. Results

No formal separation of barotropic and baroclinic
flow has been made in this model calculation. For
analysis, the depth-averaged flow is used as an approx-
imation to the barotropic flow, and we will simply refer
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Fig. 11. Barotropic currents in a region from 80° to 95°E and 20° to 12°S over the Ninety East Ridge. The solution on May 15 after 840 days of
integration is shown: (a) control (I'=1) with flat bottom, (b) control (I'=1), (¢) I'=38, and (d) I"=16. Solutions in (b)—(d) include full bottom
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to it as the barotropic solution. Because of the large
surface elevation associated with the GWR method,
we compare solutions of pn rather than the actual
surface elevation to obtain meaningful error estimates.

11. Root mean square errors

The root mean square (rms) errors for surface
elevation and barotropic velocity components were
calculated for all cases, based on differences from the
control run. Fig. 5 displays the rms errors, computed
over the entire model domain and averaged over a
year, as a function of the speed-up parameter I" and
for the flat bottom case.

Note that the rms errors are smaller for all GWR
cases, except for I'=20, than for the flat bottom case.
This clearly means that the I"=20 solution is unac-
ceptable, but it also suggests that the other GWR

Day 960 a

solutions at least capture a significant part of the effect
of the ocean topography. However, it does not neces-
sarily mean that these solutions are acceptable.

The errors are not evenly distributed throughout
the ocean basin. Figs. 6—8 show the annual averaged
rms error for the surface elevation yn and the two
barotropic velocity components. The maximum rms
error for 1 is 2.6 cm, for the zonal velocity u, 1.1 cm/
s and for the meridional velocity, v, 1.6 cm/s. The
largest errors are found on the western side of the
basin in areas with frequent eddy activity and along
intense currents such as western boundary currents,
i.e. the Somali Current and East African Coastal
Current, and the westward flowing South Equatorial
Current in the region northeast of Madagascar. Away
from western boundaries, the largest errors, particu-
larly in the meridional velocity, are found over mid-
oceanic ridges. The flow in these regions will be
examined in the following sections.
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It was found that the solutions for I'<8 were in
excellent agreement with the control run. The exam-
ples in the next sections will demonstrate that the
I'=8 solution is very good, while solutions using
higher values of I' start to show significant errors. For
this reason, only solutions with I'=8 and I'=16 will
be discussed. Rather than emphasize the difference in
the solutions, and thus the errors, the full solution will
be shown to stress the similarities. It should also be
pointed out that snapshots of the model solution are
used in the next sections. For monthly averages of the
solution, the errors are smaller.

12. Western boundary currents and eddies

The most intense current in the Indian Ocean is the
annual reversing Somali Current. During the south-
west monsoon, the upper ocean currents exceed 2 m/s
and associated with the current are large eddies. Fig. 9
shows solutions on September 15 after the peak of the

128

13

southwest monsoon. The large eddy centered at 53°E
and 9°N is the Great Whirl found during the boreal
summer from June through October. It forms just
north of the equator in June, but migrates northward
during the southwest monsoon. All solutions, includ-
ing the two GWR solutions (I'=8 and I'=16), are
very good. However, due to small phase errors in
connection with movement of the eddy and the strong
currents, the rms error becomes large. North of the
island of Socotra, the GWR solutions with bottom
topography are in better agreement with the control,
and along the equator, a weak eastward flow is
missing from the flat bottom solution.

During the northeast monsoon season the flow is
southward in the boundary current (Fig. 10). The
major difference between the solutions is that the
Somali Current is fed by a 5°-wide eastward zonal
flow in the flat bottom case, while in the cases with
bottom topography, onshore flow follows the bottom
topography along the Carlsberg Ridge and feeds the
Somali Current in a narrow band at 10°N. The GWR
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13. As Fig. 11, but for January 15 and 1080 days of integration.
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solutions include this feature, but the solution using
I'=16 has a boundary current that is much weaker
than in the control run.

13. Oceanic ridges

Figs. 10—13 show solutions on May 15, September
15 and January 15, respectively, in a region 80°—95°E
and 20°—12°S over the shallowest part of the Ninety
East Ridge. The depth rises from 5000 to 2400 m over
200 km and drops to the same depth again over about
the same distance. The solution with a flat bottom is,
not surprisingly, very different from the other solu-
tions, but shows more clearly the passage of the wind-
forced, annual barotropic Rossby wave with a meri-
dional wavelength of about 650 km. This annual wave
causes a strong, trapped circulation around the peak of
the seamount in the solutions with bottom topography.
Using a speed-up factor of 16, the solution is accept-
able during a large part of the year, as illustrated by
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solutions at day 840 (Fig. 11) and day 1080 (Fig. 13),
but clearly inadequate around day 960 (Fig. 12).

14. Arabian sea

Rossby waves are radiated from the west coast of
India and propagate across the Arabian Sea (e.g.
Jensen, 1991). Although the oceanic response is
mainly baroclinic in nature, the shift in the wind stress
at the onset of each monsoon season will, in addition,
generate weak barotropic waves. The Arabian Sea is
also the area in the model with the largest distance
from the equator and not influenced by an artificial
boundary, and was for these two reasons chosen as a
third example of GWR solution performance. Fig. 14
shows the flow in June just after the onset of the
southwest monsoon. The flat bottom case is domi-
nated by northward barotropic flow, a fast response to
winds from the southwest. In the cases with bottom
topography, the barotropic response is delayed and
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Fig. 14. Barotropic currents in the Arabian Sea north of 15°N. The solution on June 15 after 870 days of integration is shown: (a) control (I'=1)
with flat bottom, (b) control (I"=1), (¢) I'=8, and (d) I'=16. Solutions in (b)—(d) include full bottom topography. Maximum vector shown
corresponds to 2.5 cm/s. For the flat bottom case, longer vectors are truncated and some vectors have been removed for clarity.
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strongly modified. It should be mentioned that the
total flow in the upper ocean is almost the same with
and without bottom topography, since the response to
the wind primarily is baroclinic. The I" =16 solution is
quite good, but has a relatively strong southward flow
at 60°E and the cyclonic eddy by the Persian Gulf is
missing.

At the onset of the northeast monsoon season
(Fig. 15), the flat bottom case shows a similarly
strong response, this time with reversed flow. With
bottom topography, the series of eddies along the
Arabian coast are all fairly well represented by the
GWR solutions, although some significant differ-
ences between the control and the I'=16 case can
be seen. For instance, along the Arabian coast, from
18° to 20°N, a southward coastal current and an
offshore counter current are found in the I'=16
solution, but are not seen in the control or the
I'=8 solutions. During other times of the year, the
GWR solutions have less error than in the examples
given here.
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15. Longer integrations and global models

An Oceanic General Circulation Model for a
global domain without a special numerical treatment
of the barotropic mode has yet to be run for a
simulation of several years or longer. Such a com-
putation would require too much computer time to
be practical. This implies that we are assuming that
errors introduced by time-splitting, rigid lids, semi-
implicit methods or other numerical techniques are
acceptable, although we do not have error esti-
mates.

The model used in this study was designed to be a
regional, eddy-resolving model, and the results shown
above are for 3-year integrations and a limited geo-
graphical area. The integration time was chosen to be
sufficiently long to allow the first baroclinic Rossby
wave to propagate across the ocean and establish a
circulation in balance with the wind stress, and the
limited domain ensured that a control run with I'=1
was computationally feasible.
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Fig. 15. As Fig. 14, but for December 15 and 1050 days of integration.
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As the ocean circulation is spun up further, an
accumulation of errors due to numerical differences
between the control run and the GWR run can be
expected. For instance, while the time truncation error
is smaller in the control run, the numerical viscosity
introduced by the time filter is larger than for the
GWR runs. By extending the control run and the I'=8
run to 12 years, the rms errors were found to have
increased by about 65% for the scaled surface eleva-
tion yn and for the zonal velocity component, while
the rms error for the meridional velocity increased by
a factor of 2. The increase in rms errors continued
during years 3 to 12, but with a decreasing rate.
Overall, the barotropic currents (panels b and ¢ in
Figs. 9—15) showed little change between year 3 and
year 12 at any day throughout the year.

The model was also extended to include a near-
global domain, covering the globe from 60°S to 60°N.
Periodic boundary conditions were used in the zonal
direction, and the resolution was kept at 1/3°. The
model was run for 3 years using I'=8 and I'=16. The
differences between the two runs were used to estimate
rms errors for tropical areas outside the Indian Ocean.
In the tropical region (20°S to 20°N), the rms errors
for the surface elevation and the meridional velocity
were slightly higher in the Indian Ocean than the
average over all tropical oceans. The rms error for
the zonal velocity was 33% smaller in the Indian
Ocean. The largest errors were found in the Somali
Current and the New Guinea Coastal Current. Overall,
it seems that the error estimation in the Indian Ocean
represent the errors in the tropical oceans quite well.

Table 1
Barotropic and first mode baroclinic gravity wave phase speed (m/s)
and fraction of correct Rossby wave phase speed for three wave-
lengths

Speed-up  External  First Wavelength

factor (I')  gravity internal 500 km 1000 km 1500 km
1 199.2 3.11 1.00 1.00 1.00
3 66.3 3.12 0.99 0.95 0.90
4 47.7 3.12 0.98 0.91 0.82
5 39.7 3.13 0.96 0.86 0.75
8 24.6 3.15 0.91 0.72 0.53
10 19.6 3.18 0.86 0.61 0.41
12 16.2 3.21 0.82 0.52 0.33
16 11.8 3.29 0.71 0.38 0.22
20 9.1 3.42 0.61 0.28 0.17

Outside the tropics, the baroclinic circulation is far
from equilibrium, so a quantitative error estimation is
not meaningful. However, regions where errors are
large can be identified, and they are likely to remain
areas with relative large errors for longer integrations.
In the subtropics, the largest differences are found in
the western boundary currents, e.g. the Algulhas
Current, Brazil Current and in the eddy fields off
the west coast of South Africa and South America. In
mid-latitudes, the Kuroshio, the Gulf Stream and the
Malvinas Current have the largest errors.

There are several reasons for increased errors in
the extended domain. From Eq. (24), we found that
Rossby waves with bi-monthly period only can exist
equatorward of 40° for I'=8, and from Table 1, we
see that the longest barotropic Rossby waves are
significantly slowed down as I' increases. This raises
the potential for particularly large errors in the
Southern Ocean. In the short near-global integration
done here, the largest errors were indeed found in
that ocean.

16. Summary and discussion

The gravity wave retardation (GWR) method was
introduced as a potential alternative way to solve for
the barotropic mode. It was shown that the method
essentially corresponds to a physical system where the
air is replaced with a fluid of much higher density. For
instance, if the GWR speed-up factor is 8, the density
of the fluid is 98.4% of the sea water. The associated
large deviations in surface elevation in the modified
solution may seem severe, and do introduce errors.
However, for the purpose of sea level analysis, for
instance a comparison with satellite observations, the
surface displacement in the GWR solution can be
rescaled by multiplication of the GWR parameter y to
give very good results.

The errors introduced by the GWR method for
barotropic Rossby waves are most severe for waves
with scales of the order of the external Rossby radius
of deformation or larger. Fortunately, the scale of
weather systems which force the ocean is smaller,
which makes it possible to use the method for realistic
forcing.

It was demonstrated using a five-layer model with
bottom topography and climatological wind forcing,
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that the GWR method can produce realistic solutions.
For solutions with speed-up factors up to 16, it was
found that the rms errors for rescaled sea level and for
barotropic current components were less than for a flat
bottom case without wave distortion. Errors were
largest along the western side of the basin and along
oceanic ridges and areas of similarly steep bottom
topography.

Solutions for the barotropic mode are remarkably
good for speed-up factors of about 8 for the case of
monthly forcing in a tropical ocean. For high-fre-
quency wind forcing, i.e. less than 30 days period,
the oceanic response in mid-latitudes is essentially
purely barotropic, but very weak compared to the
response to seasonal forcing. In order to model the
resulting flow adequately, Tobis (1996) found that
the speed-up factor should not exceed 4. However,
these high-frequency barotropic flows have not been
demonstrated to be of importance for climate simu-
lations.

When the GWR speed-up factor is increased, the
error increases, but the same is true for implicit
methods as the time step is increased to speed-up
calculations. The major advantage of the GWR
method compared to other methods is its easy imple-
mentation and explicit time step that allows straight-
forward parallelization of the code. For a layer model,
the method does not require a separation of the
barotropic mode, and can be implemented by minor
changes to the code. For an OGCM with time split-
ting, a single parameter can substantially reduce the
computational cost. The method can be used to save
significant computational resources for model testing,
for parameter studies, or for simulations of tropical
oceans where high accuracy of the barotropic mode
may not be needed. However, as the vertical resolu-
tion of the model increases, the relative cost of the
barotropic calculation decreases, and the benefit of the
GWR method will be reduced.
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