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Abstract

Fast barotropic gravity waves in the ocean require that an efficient computational method is applied in ocean models used for

climate simulations. The gravity wave retardation (GWR) method is a simple technique that slows down surface waves and

allows a simple explicit integration to be used. Here the method is discussed and applied to a layer model of the tropical Indian

Ocean subject to monthly climatological wind forcing. The errors introduced by the GWR method on the barotropic ocean

circulation and sea surface elevation are analyzed. Comparison to a model integration with a flat bottom demonstrates that

GWR integrations with a speed-up factor up to 16 indeed capture some influence of the bottom relief, in the sense that the GWR

solutions have less error than if topography was ignored. Integrations with a speed-up factor of up to 8 are found to model the

barotropic circulation well, implying that the GWR method can be applied to climate modelling.

D 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

State of the art climate modelling requires long

integrations of ocean models with relatively high re-

soluion. This demands very powerful computing re-

sources, most easily provided by massively parallel

computers. To take advantage of these resources, a

code must be very close to 100% parallelized, which

limits our choice of suitable algorithms. When based

on the equations of an incompressible fluid, the

fastest propagating waves in an ocean general circu-

lation model (OGCM) are long gravity waves. They

propagate with phase speeds exceeding internal

modes by two orders of magnitude, and provide

adjustment to geostrophically balanced flow at a time

scale much shorter than those of interest in climate

modelling.

Oberhuber (1993) applied a semi-implicit method

to an isopycnal OGCM for all layers, but more

commonly, a separation into barotropic and baro-

clinic modes is made, so that two different algo-

rithms can be applied. The slow baroclinic mode is

usually solved by an explicit time integration

scheme. For the fast mode, an elliptic equation can

be formulated by introducing a streamfunction (e.g.

Bryan, 1969; Semtner, 1986), or by treating the

surface elevation implicitly (Dukowicz and Smith,

1994). With this method, the parallelization problem
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is primarily associated with the barotropic mode.

Many recent models solve the barotropic mode

explicitly by sub-cycling, i.e. using a much smaller

time step for the fast mode to ensure numerical

stability (e.g. Blumberg and Mellor, 1987; Killworth

et al., 1991; Bleck and Smith, 1990; Hallberg, 1997).

In that case, parallelization is easy, but the solution of

the barotropic mode is relatively costly. Bryan (1984)

used accelerated physics to reach a steady solution

for climate models, but this method distorts all waves

and can only be applied for a spin-up of the ocean to

a steady state.

The gravity wave retardation (GWR) method has

been used and analyzed for layer models in simple

basin geometries and for simple forcing fields (Jensen,

1996; Tobis, 1996). More recently, Jensen (2001)

applied the GWR method successfully to a realistic

ocean basin with observed wind forcing and demon-

strated its relatively high accuracy and high efficiency.

However, in Jensen (1996, 2001), the GWR method

was mainly considered an alternative to reduced

gravity models by including effects of bottom top-

ography on the baroclinic modes. Consequently, the

error analysis in those studies focused on the baro-

clinic modes.

In this paper, we will use the same model as Jensen

(2001), but investigate the barotropic response. This is

of particular interest for OGCMs for climate model-

ling, since the GWR method easily can be applied to a

sub-cycled barotropic mode to save significant com-

puter time. In fact, Hearn and Hunter (1987) and

Hunter (1990a,b) used the equivalent of this method

to spin-up barotropic ocean models on an f-plane to

investigate flows in coastal regions subject to steady

wind forcing.

2. The GWR method

The method works by slowing down the phase

speeds of the barotropic gravity waves. Hearn and

Hunter (1987) simply reduced the gravitational con-

stant since they applied it to a homogeneous sea,

while Jensen (1996) extended the method to the

stratified case and demonstrated the analogy of the

GWR method to the method of artificial compressi-

bility (Chorin, 1967) by introducing a simple mod-

ification of the continuity equation. In a layer model,

this results in a multiplication factor c to the surface

elevation g in the pressure gradient term:

rpj ¼ g

 
cqjrg �

Xj�1

i¼1

½ðqj � qiÞrHi�
!
; ð1Þ

where g is the constant gravitational acceleration, qj

is the density, and Hj is the thickness of layer j.

Phase speeds of barotropic gravity waves are

changed by a factor of the square root of c, allowing
an increase in time step by a factor of C ¼

ffiffiffiffiffiffiffi
1=c

p
for

an explicit integration. Details of the derivation are

given in Jensen (1996). We will refer to c as the

GWR parameter and to C as the GWR speed-up

factor.

An appealing interpretation of how the method

works was suggested by Cushman-Roisin (personal

communication, 1996). By increasing the air density

above the ocean, the effective gravity at the air–sea

interface is only a fraction of its physical value. This

affects all waves, but primarily ocean surface waves,

which become internal waves in the modified atmos-

phere–ocean system. The equivalence of the GWR

method to this modified physical system is only exact

for a homogeneous ocean, but is closely related in the

stratified case as shown below.

3. Pressure gradient in a layered fluid

Consider a fluid with N + 1 isopycnal layers in the

vertical and a free surface g(/, h) and the bottom

at �D(/, h), where / is the longitude and h is the

latitude (Fig. 1). The hydrostatic pressure in the upper

layer (layer 0) is given by:

p0ðzÞ ¼ �gq0z ð2Þ

where the height z of a density surface is negative in

the fluid and zero at the surface g. A deeper layer j has

its upper boundary at:

zTj ¼ �
Xj�1

i¼0

Hi ð3Þ

so we find:

pjðzÞ ¼ pj�1ðzTjÞ � gqjðz� zTjÞ ð4Þ
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where the pressure at the top of layer j equals the

pressure at the bottom of layer j� 1, e.g.:

pj�1ðzTjÞ ¼
Xj�1

i¼0

gqiHi: ð5Þ

We need to find the horizontal pressure gradient,

vertically integrated over each layer. In a z-coordi-

nate system, it is straightforward to integrate first

and then use the Leibnitz formula to obtain this

quantity. However, if we keep in mind that the

density coordinate varies in the horizontal direction

so that:

rz ¼ �rg ¼ �r
XN
i¼0

ðHi � DÞ ð6Þ

where the gradient is along constant density surfa-

ces, we find, taking the gradient of Eq. (4) and

inserting the definitions of Eqs. (3) and (5):

rpj ¼ g

"
qjrg �r

Xj�1

i¼0

ðqj � qiÞHi

#
: ð7Þ

4. Modified atmosphere–ocean system

Applying Eq. (7) to a system with an atmosphere

with density q0 = qa and thickness H0 =Ha over a two-

layer ocean with densities q1 and q2 and layer thick-

nesses H1 and H2, respectively, we find for the

atmosphere:

rpa ¼ gqarg; ð8Þ

for the upper ocean:

rp1 ¼ g½q1rg � ðq1 � qaÞrHa� ð9Þ

and for the deeper ocean:

rp2¼g½q2rg�ðq2�qaÞrHa�ðq2�q1ÞrH1�: ð10Þ

The gradient of the elevation at the top of the at-

mosphere is given by:

rg ¼ rðHa þ H1 þ H2 � DÞ ¼ rHa þrgs ð11Þ

where we have defined a sea surface elevation gs,
assuming that the topography is confined to the ocean.

Assuming a rigid lid (g = 0) on the top of the atmos-

phere gives:

rHa ¼ �rgs ð12Þ

and the equations for the ocean become for layers 1

and 2, respectively:

rp1 ¼ gðq1 � qaÞrgs ð13Þ

rp2 ¼ gðq2 � qaÞrgs � gðq2 � q1ÞrH1: ð14Þ

For an unmodified atmosphere–ocean system, we

have qabq1, and Eqs. (13) and (14) are given by Eq.

(1) with c = 1. We also note that using c=(qo� qa*)/qo
in Eq. (1), where qo is a reference density for seawater

and qa* is an artificially increased air density is closely

related, but not identical, to increasing the air density.

The latter corresponds to choosing a slightly different

c for each layer in Eq. (1), i.e.:

cj ¼ ðqj � qa*Þ=qj: ð15Þ

5. Relation to reduced gravity models

Decreasing c in GWR models reduces the effective

gravity in a way similar to reduced gravity models: in

Fig. 1. A general layer model with a free surface and bottom

topography confined to the deepest layer.
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Eq. (1), the gradient of the surface elevation can be

written as the gradient of the sum of all layer thick-

nesses, i.e.:

rg ¼
XN
i¼1

rHi: ð16Þ

Reduced gravity models have a surface gradient

forcing term given by:

rg ¼
XN�1

i¼1

qN � qi

qN

� 	
rHi; ð17Þ

(Jensen, 1991, 1996). The latter is equivalent to using

a depth-varying value of c that is proportional to the

density difference between each layer and the deepest

layer. Substituting Eq. (17) for cjg in Eq. (1) it is

seen that the pressure gradient vanishes in the deepest

layer, N, and the pressure gradients in the layers above

are identical to those in a reduced gravity model. A

reduced model is therefore a special case of a GWR

model.

6. Range of values for the GWR parameter ;

It was shown in Jensen (1996), using the linear

system of equations, that the equivalent depths for the

modified system are found as eigenvalues to the

matrix:

aji ¼ c � 1þ
qminðj;iÞ

qj

" #
H0j; ð18Þ

and the eigenvectors give the vertical structure of the

flow. The subscript 0 indicates that a basic state at rest

is used for this calculation. While the eigenvalues for

the general case must found by a numerical solution,

we can illustrate how the method works for the two-

layer ocean with a density difference of Dq between

the lower and upper layers. If we chose to write the

two-layer system as H01 = aH and H02=(1� a) H,

where 0 < a < 1, we find from Eq. (18) that the two

eigenvalues are:

hð0;1Þ ¼ 1

2
cH

�
1F

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p 	
; ð19Þ

where:

b ¼ 4Dqað1� aÞ
qc

; ð20Þ

and the phase speeds are given by:

cð0;1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ghð0;1Þ

q
: ð21Þ

Here the superscripts 0 and 1 refer to the barotropic

mode and the baroclinic mode, respectively. For

propagating solutions, the eigenvalues must be real,

that is the term under the square root must be positive,

i.e. bV 1. In the case of bb1, we can expand the

equivalent depths in Taylor series as:

h0ccHð1� 1=4 b� 1=16 b2Þ þ Oðb3Þ ð22Þ

and

h1c
Dqað1� aÞ

q
ð1þ 1=4 bþ 1=8 b2 þ Oðb3ÞÞ:

ð22Þ

We note that to first order the phase speed of the

barotropic mode is changed by a factor of
ffiffiffi
c

p
, while

the baroclinic mode is unchanged. The higher order

terms imply that the baroclinic mode in a GWR

solution will have a slightly increased phase speed

compared to the c = 1 case.

A special case is c =Dq/q, where Eq. (19) can be

solved exactly:

h0 ¼ Dq
q

ð1� aÞH ; h1 ¼ Dq
q

aH : ð23Þ

One phase speed, c0, becomes identical to that of a

bottom boundary layer in an infinitely deep ocean,

while the phase speed of the other mode becomes the

same as found for a finite upper layer over an infinitely

deep ocean. As far as phase speed is concerned, wave

propagation has been replaced by two independent

(baroclinic) reduced gravity wave solutions.

In the general case, the GWR parameter must be

chosen sufficiently large that the barotropic mode

remains significantly faster than the baroclinic

modes, and so that all eigenvalues remain real. Using

the two-layer case above as guidance, we find that in

practice, c > Dqmax/q, where Dqmax is the maximum

potential density difference in the open ocean, can be
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used to determine the maximum possible speed-up

factor while maintaining physical meaningful solu-

tions and numerical stability. Since this density

difference is of order 10 kg/m3, we can expect

stability for a speed-up of an order of magnitude.

Shallow surface layers of relative fresh water can be

ignored since they do not influence the phase speed

of the lowest order baroclinic mode. However, if a

model explicitly includes shallow estuaries, where

the thickness of fresh water outflow is a significant

fraction of the total depth and assuming a density

difference of about 25 kg/m3, the speed-up factor is

limited to a factor of 5–6.

7. Impact on barotropic wave propagation

The effect of the method on the phase propagation

of baroclinic gravity waves has been shown to be

small, about 3–5% for a speed-up factor C of 10, and

the effect on baroclinic Rossby waves is even smaller

(Tobis, 1996; Jensen, 1996, 2001). Therefore, only

the effect of the barotropic modes will be discussed

here.

Since the GWR method works by slowing down

barotropic gravity waves by an the order of magni-

tude, it obviously cannot be used to model any

process that requires a good representation of their

phase and energy propagation. As the phase speed is

reduced, the barotropic Rossby radius of deformation

is decreased by the same factor. As a result, geo-

strophic adjustment takes place over a much smaller

area with very large surface displacements, and the

increased deformation of the fluid column causes

errors in the solution. The interpretation of surface

waves as internal waves in a modified atmosphere–

ocean system also help our understanding of the large

surface elevations associated with the method. How-

ever, since c and g appear only as a product in Eq. (1),

the pressure gradients are fairly accurate, and the

exaggerated surface elevation g from a GWR solution

can simply be rescaled by multiplication of c to obtain

realistic values (Hearn and Hunter, 1987).

Barotropic Rossby waves are dispersive and the

relative error associated with the GWR method

depends on the wave number. Fig. 2 shows the ratio

of the phase speed in a GWR model to the unmodified

phase speed as function of the wavelength k, scaled in

units of the Rossby radius of deformation a for C = 1.

The ratio of kinetic energy density to potential energy

density is (ka)2, where k is the wave number (e.g. Gill,

1982, p. 502), so Rossby waves with kaH1 (or

kb2p in Fig. 2) are associated with fast, horizontal

motion. Waves with kab1 mainly represent changes

in potential energy, and are not represented in Fig. 2.

Recall the barotropic deformation radius is about 2000

km in the open ocean, so ka = 1 corresponds to a

wavelength of approximately the width of the Pacific

Ocean. For ka>2p, the barotropic wavelength is

shorter that the external Rossby deformation radius.

Fortunately, most barotropic waves, although the zo-

nal scale may be basin-wide, are generated by weather

systems with a meridional length scale of 1000 km or

less, keeping ka much larger than 1.

The group velocity of barotropic Rossby waves is

more severely affected. Fig. 3 shows the ratio of the

group velocity in the zonal direction for waves in a

GWR model to the exact group velocity in the same

direction as a function of the zonal wavelength scaled

as in Fig. 2. As the speed-up factor C is increased, the

wavelength of the stationary Rossby wave (ka= 1)

decreases and the range of wavelengths with eastward

energy propagation is reduced. This means that bar-

Fig. 2. Ratio of the phase speed of the barotropic Rossby waves in a

GWR solution to the unmodified phase speed as function of

wavelength in units of the (unmodified) Rossby radius of de-

formation. The same curves apply to the ratio of zonal group velo-

city components for barotropic Rossby waves with zero zonal wave

number. Curves are shown for different values of the speed-up

factor C.
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otropic waves in the open ocean, which should have

eastward energy propagation if ka < 1, instead will

propagate energy westward if the GWR speed-up

factor is sufficiently large. From Fig. 3, we note that

waves longer than 1500 km (3/4 of the deformation

radius) will propagate energy westward if C exceeds

8. Fig. 3 was computed assuming that the meridional

wave number is zero, but usually the zonal wave

number is much smaller than the meridional wave

number. If the zonal wave number is zero, the ratio of

zonal group velocities is identical to the ratio of phase

velocities, i.e. Fig. 2. However, as indicated by Fig. 3,

the relative error may be still be large for waves that

have a group velocity close to zero. The group

velocity in the meridional direction is also affected.

Fig. 2 can be used to obtain the ratio, since it is the

square of the ratio of the phase speeds.

The shortest period of Rossby waves varies with

latitude as

Tmax ¼
4pR
c

tanð/Þ ð24Þ

where R is the radius of the Earth and c the gravity

phase speed. Barotropic Rossby waves with monthly

periods can occur everywhere except within a few

degrees of the north pole. However, as the phase

speed is modified by the GWR method, the area

where barotropic Rossby waves with a given fre-

quency can exist decreases. For a speed-up factor of

5, 10, and 16, respectively, the latitude decreases to

55j, 35j, and 25j, respectively. For a bi-monthly

Fig. 3. As in Fig. 2, but for the group velocity in the zonal direction

of barotropic Rossby waves with zero meridional wave number.

Fig. 4. Bottom topography for the Indian Ocean model. The minimum depth is 1200 m, the maximum depth is 6000 m, and the contour interval

is 150 m.
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period, the corresponding latitudes are 70j, 55j, and
40j, so monthly forcing cannot generate barotropic

Rossby waves poleward of these latitudes.

8. Model and forcing

The ocean model is an isopycnal model in spher-

ical coordinates, and includes mixed layer physics

(Jensen, 1996, 1998). It has a uniform horizontal

resolution of 1/3j, covering the Indian Ocean north

of 30jS and west of 120jE. The model has a free

surface and five layers with bottom topography con-

fined to the deepest layer. The initial thickness is 80,

120, 250 and 600 m for layers 1–4, respectively,

while the thickness of layer 5 varies initially between

150 and 4950 m, with an average of 3000 m. The

densities of layers 1–5 are 1023.6, 1025.4, 1026.5,

1027.2 and 1028.2 kg/m3, respectively. The initial

thickness and density for each layer was determined

using temperature and salinity from the World Ocean

Atlas 1994 (Levitus and Boyer, 1994; Levitus et al.,

1994) as follows: the annually averaged potential

density was computed in the model domain and the

depths of the 1024.0, 1026.0, 1027.0 and 1027.5

isopycnals were determined. These isopycnals sepa-

rate core layers in the Indian Ocean (e.g. Wyrtki,

1971, p. 219). In locations where the resulting layer

thicknesses were less than 50 m, the layers were

increased by moving the interface downward and

Fig. 5. Annual mean of the basin-wide root mean square (rms) error

for the rescaled surface elevation, cg (circles), depth average of the

zonal velocity component u (plus) and the depth average of the

meridional velocity component v (triangle) as a function of the

speed-up factor C. The label flat bottom indicates the rms error of

the case of a flat bottom without any change in phase speeds. Units

are mm for surface elevation and mm/s for velocity components.

Fig. 6. Distribution of the annual mean rms error for the rescaled surface elevation cg for a GWR solution with a speed-up factor of 8. Contour

interval is 0.3 cm. The maximum rms error is 2.6 cm.
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entraining fluid into the layer above. The spatial

averaged depth and density for each layer were then

computed and rounded to the nearest 10 m for layer

thickness and to the nearest 0.1 kg/m3 for density.

The bottom topography (National Oceanographic

andAtmosphericAdministration, 1986) is usedwithout

smoothing, but limited to be between 1200 and 6000

m (Fig. 4) in order to keep the topography in the dee-

Fig. 7. Distribution of the annual mean rms error for the barotropic zonal velocity component u for a GWR solution with a speed-up factor of 8.

Contour interval is 0.06 cm/s. The maximum rms error is 1.1 cm/s.

Fig. 8. Distribution of the annual mean rms error for the barotropic meridional velocity component v for a GWR solution with a speed-up factor

of 8. Contour interval is 0.06 cm/s. The maximum rms error is 1.6 cm/s.
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pest layer. For simplicity, all lateral boundaries, inclu-

ding the southern and eastern boundaries, are closed.

Wind stress is climatological monthly mean winds

from 1979 to 1988 from the European Center for Me-

dium Range Forecast (ECMWF) reanalysis. Since the

time resolution of the forcing is coarse, a linear in-

terpolation in time is done to each model time step.

Spatial interpolation was done using bi-cubic splines

Fig. 9. Barotropic currents and rescaled surface elevation in the Somali Current region on September 15 after 960 days of integration: (a) control

(C = 1) with flat bottom, (b) control (C= 1), (c) C= 8, and (d) C = 16. Solutions in (b)– (d) include full bottom topography. Maximum vector

shown corresponds to 10 cm/s. A few longer vectors in (a) are truncated. Contour interval for the surface elevation is 2 cm. Positive values are

shown with a solid line and negative values with a dashed line. The zero contour is not shown.
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in space, which results in a continuous wind stress

curl field.

Solving for Eq. (18) with the given model strat-

ification results in the phase speeds in Table 1. Note

that the phase speeds for the first mode baroclinic

gravity waves are only slightly changed. Higher ba-

roclinic modes are less affected. Also shown is the

ratio of phase speeds for barotropic Rossby waves in a

GWR computation to the unmodified computation for

three different wavelengths.

Fig. 10. As Fig. 9, but for January 15 and 1080 days of integration.
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9. Experiments

The circulation after 3 years of spin-up is investi-

gated. Although fairly short, this is sufficient for com-

puting errors related to the GWR method. The ocean

model gives a realistic general circulation of the Indian

Ocean as documented elsewhere (e.g. Jensen, 1991,

1993, 2001).

A control run was done without any reduction in

gravity wave speed and required a time step of 45 s.

Runs with values of the speed-up factor, C = 5, 8, 10,

and 12 used time steps of 200, 320, 360, and 450 s,

respectively, while runs with C values of 16 and 20

used a time step of 600 s. In addition to these runs

which include varying bottom topography, a case with

a flat bottom with the same average depth of 4045 m

and unmodified phase speeds (i.e. C = 1) was com-

puted. Since the effect of topography on the deep flow

is reduced as C is increased (Jensen, 2001), a minimum

requirement for a meaningful GWR solution is that the

errors associated with the method are less than for a flat

bottom case. The flat bottom case is numerically stable

for values of CV 28.86. However, in shallow areas, the

barotropic gravity wave speed decreases, so a smaller

value of C is required to keep it larger than the

baroclinic phase speed. A stable solution requires

CV 20 to include areas where layer 5 may be of the

order of 10 m.

10. Results

No formal separation of barotropic and baroclinic

flow has been made in this model calculation. For

analysis, the depth-averaged flow is used as an approx-

imation to the barotropic flow, and we will simply refer

Fig. 11. Barotropic currents in a region from 80j to 95jE and 20j to 12jS over the Ninety East Ridge. The solution on May 15 after 840 days of

integration is shown: (a) control (C = 1) with flat bottom, (b) control (C= 1), (c) C= 8, and (d) C= 16. Solutions in (b)– (d) include full bottom

topography. Maximum vector shown corresponds to 2 cm/s.
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to it as the barotropic solution. Because of the large

surface elevation associated with the GWR method,

we compare solutions of cg rather than the actual

surface elevation to obtain meaningful error estimates.

11. Root mean square errors

The root mean square (rms) errors for surface

elevation and barotropic velocity components were

calculated for all cases, based on differences from the

control run. Fig. 5 displays the rms errors, computed

over the entire model domain and averaged over a

year, as a function of the speed-up parameter C and

for the flat bottom case.

Note that the rms errors are smaller for all GWR

cases, except for C = 20, than for the flat bottom case.

This clearly means that the C = 20 solution is unac-

ceptable, but it also suggests that the other GWR

solutions at least capture a significant part of the effect

of the ocean topography. However, it does not neces-

sarily mean that these solutions are acceptable.

The errors are not evenly distributed throughout

the ocean basin. Figs. 6–8 show the annual averaged

rms error for the surface elevation cg and the two

barotropic velocity components. The maximum rms

error for cg is 2.6 cm, for the zonal velocity u, 1.1 cm/

s and for the meridional velocity, v, 1.6 cm/s. The

largest errors are found on the western side of the

basin in areas with frequent eddy activity and along

intense currents such as western boundary currents,

i.e. the Somali Current and East African Coastal

Current, and the westward flowing South Equatorial

Current in the region northeast of Madagascar. Away

from western boundaries, the largest errors, particu-

larly in the meridional velocity, are found over mid-

oceanic ridges. The flow in these regions will be

examined in the following sections.

Fig. 12. As Fig. 11, but for September 15 and 960 days of integration. In (b) the maximum current reached 2.16 cm/s at this time, but the vectors

are truncated at 2 cm/s.
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It was found that the solutions for C < 8 were in

excellent agreement with the control run. The exam-

ples in the next sections will demonstrate that the

C = 8 solution is very good, while solutions using

higher values of C start to show significant errors. For

this reason, only solutions with C = 8 and C = 16 will

be discussed. Rather than emphasize the difference in

the solutions, and thus the errors, the full solution will

be shown to stress the similarities. It should also be

pointed out that snapshots of the model solution are

used in the next sections. For monthly averages of the

solution, the errors are smaller.

12. Western boundary currents and eddies

The most intense current in the Indian Ocean is the

annual reversing Somali Current. During the south-

west monsoon, the upper ocean currents exceed 2 m/s

and associated with the current are large eddies. Fig. 9

shows solutions on September 15 after the peak of the

southwest monsoon. The large eddy centered at 53jE
and 9jN is the Great Whirl found during the boreal

summer from June through October. It forms just

north of the equator in June, but migrates northward

during the southwest monsoon. All solutions, includ-

ing the two GWR solutions (C = 8 and C = 16), are

very good. However, due to small phase errors in

connection with movement of the eddy and the strong

currents, the rms error becomes large. North of the

island of Socotra, the GWR solutions with bottom

topography are in better agreement with the control,

and along the equator, a weak eastward flow is

missing from the flat bottom solution.

During the northeast monsoon season the flow is

southward in the boundary current (Fig. 10). The

major difference between the solutions is that the

Somali Current is fed by a 5j-wide eastward zonal

flow in the flat bottom case, while in the cases with

bottom topography, onshore flow follows the bottom

topography along the Carlsberg Ridge and feeds the

Somali Current in a narrow band at 10jN. The GWR

Fig. 13. As Fig. 11, but for January 15 and 1080 days of integration.
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solutions include this feature, but the solution using

C = 16 has a boundary current that is much weaker

than in the control run.

13. Oceanic ridges

Figs. 10–13 show solutions on May 15, September

15 and January 15, respectively, in a region 80j–95jE
and 20j–12jS over the shallowest part of the Ninety

East Ridge. The depth rises from 5000 to 2400 m over

200 km and drops to the same depth again over about

the same distance. The solution with a flat bottom is,

not surprisingly, very different from the other solu-

tions, but shows more clearly the passage of the wind-

forced, annual barotropic Rossby wave with a meri-

dional wavelength of about 650 km. This annual wave

causes a strong, trapped circulation around the peak of

the seamount in the solutions with bottom topography.

Using a speed-up factor of 16, the solution is accept-

able during a large part of the year, as illustrated by

solutions at day 840 (Fig. 11) and day 1080 (Fig. 13),

but clearly inadequate around day 960 (Fig. 12).

14. Arabian sea

Rossby waves are radiated from the west coast of

India and propagate across the Arabian Sea (e.g.

Jensen, 1991). Although the oceanic response is

mainly baroclinic in nature, the shift in the wind stress

at the onset of each monsoon season will, in addition,

generate weak barotropic waves. The Arabian Sea is

also the area in the model with the largest distance

from the equator and not influenced by an artificial

boundary, and was for these two reasons chosen as a

third example of GWR solution performance. Fig. 14

shows the flow in June just after the onset of the

southwest monsoon. The flat bottom case is domi-

nated by northward barotropic flow, a fast response to

winds from the southwest. In the cases with bottom

topography, the barotropic response is delayed and

Fig. 14. Barotropic currents in the Arabian Sea north of 15jN. The solution on June 15 after 870 days of integration is shown: (a) control (C= 1)

with flat bottom, (b) control (C= 1), (c) C= 8, and (d) C= 16. Solutions in (b)– (d) include full bottom topography. Maximum vector shown

corresponds to 2.5 cm/s. For the flat bottom case, longer vectors are truncated and some vectors have been removed for clarity.
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strongly modified. It should be mentioned that the

total flow in the upper ocean is almost the same with

and without bottom topography, since the response to

the wind primarily is baroclinic. The C = 16 solution is

quite good, but has a relatively strong southward flow

at 60jE and the cyclonic eddy by the Persian Gulf is

missing.

At the onset of the northeast monsoon season

(Fig. 15), the flat bottom case shows a similarly

strong response, this time with reversed flow. With

bottom topography, the series of eddies along the

Arabian coast are all fairly well represented by the

GWR solutions, although some significant differ-

ences between the control and the C = 16 case can

be seen. For instance, along the Arabian coast, from

18j to 20jN, a southward coastal current and an

offshore counter current are found in the C = 16

solution, but are not seen in the control or the

C = 8 solutions. During other times of the year, the

GWR solutions have less error than in the examples

given here.

15. Longer integrations and global models

An Oceanic General Circulation Model for a

global domain without a special numerical treatment

of the barotropic mode has yet to be run for a

simulation of several years or longer. Such a com-

putation would require too much computer time to

be practical. This implies that we are assuming that

errors introduced by time-splitting, rigid lids, semi-

implicit methods or other numerical techniques are

acceptable, although we do not have error esti-

mates.

The model used in this study was designed to be a

regional, eddy-resolving model, and the results shown

above are for 3-year integrations and a limited geo-

graphical area. The integration time was chosen to be

sufficiently long to allow the first baroclinic Rossby

wave to propagate across the ocean and establish a

circulation in balance with the wind stress, and the

limited domain ensured that a control run with C = 1

was computationally feasible.

Fig. 15. As Fig. 14, but for December 15 and 1050 days of integration.
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As the ocean circulation is spun up further, an

accumulation of errors due to numerical differences

between the control run and the GWR run can be

expected. For instance, while the time truncation error

is smaller in the control run, the numerical viscosity

introduced by the time filter is larger than for the

GWR runs. By extending the control run and the C = 8

run to 12 years, the rms errors were found to have

increased by about 65% for the scaled surface eleva-

tion cg and for the zonal velocity component, while

the rms error for the meridional velocity increased by

a factor of 2. The increase in rms errors continued

during years 3 to 12, but with a decreasing rate.

Overall, the barotropic currents (panels b and c in

Figs. 9–15) showed little change between year 3 and

year 12 at any day throughout the year.

The model was also extended to include a near-

global domain, covering the globe from 60jS to 60jN.
Periodic boundary conditions were used in the zonal

direction, and the resolution was kept at 1/3j. The
model was run for 3 years using C = 8 and C = 16. The

differences between the two runs were used to estimate

rms errors for tropical areas outside the Indian Ocean.

In the tropical region (20jS to 20jN), the rms errors

for the surface elevation and the meridional velocity

were slightly higher in the Indian Ocean than the

average over all tropical oceans. The rms error for

the zonal velocity was 33% smaller in the Indian

Ocean. The largest errors were found in the Somali

Current and the New Guinea Coastal Current. Overall,

it seems that the error estimation in the Indian Ocean

represent the errors in the tropical oceans quite well.

Outside the tropics, the baroclinic circulation is far

from equilibrium, so a quantitative error estimation is

not meaningful. However, regions where errors are

large can be identified, and they are likely to remain

areas with relative large errors for longer integrations.

In the subtropics, the largest differences are found in

the western boundary currents, e.g. the Algulhas

Current, Brazil Current and in the eddy fields off

the west coast of South Africa and South America. In

mid-latitudes, the Kuroshio, the Gulf Stream and the

Malvinas Current have the largest errors.

There are several reasons for increased errors in

the extended domain. From Eq. (24), we found that

Rossby waves with bi-monthly period only can exist

equatorward of 40j for C = 8, and from Table 1, we

see that the longest barotropic Rossby waves are

significantly slowed down as G increases. This raises

the potential for particularly large errors in the

Southern Ocean. In the short near-global integration

done here, the largest errors were indeed found in

that ocean.

16. Summary and discussion

The gravity wave retardation (GWR) method was

introduced as a potential alternative way to solve for

the barotropic mode. It was shown that the method

essentially corresponds to a physical system where the

air is replaced with a fluid of much higher density. For

instance, if the GWR speed-up factor is 8, the density

of the fluid is 98.4% of the sea water. The associated

large deviations in surface elevation in the modified

solution may seem severe, and do introduce errors.

However, for the purpose of sea level analysis, for

instance a comparison with satellite observations, the

surface displacement in the GWR solution can be

rescaled by multiplication of the GWR parameter c to

give very good results.

The errors introduced by the GWR method for

barotropic Rossby waves are most severe for waves

with scales of the order of the external Rossby radius

of deformation or larger. Fortunately, the scale of

weather systems which force the ocean is smaller,

which makes it possible to use the method for realistic

forcing.

It was demonstrated using a five-layer model with

bottom topography and climatological wind forcing,

Table 1

Barotropic and first mode baroclinic gravity wave phase speed (m/s)

and fraction of correct Rossby wave phase speed for three wave-

lengths

Speed-up External First Wavelength

factor (C) gravity internal
500 km 1000 km 1500 km

1 199.2 3.11 1.00 1.00 1.00

3 66.3 3.12 0.99 0.95 0.90

4 47.7 3.12 0.98 0.91 0.82

5 39.7 3.13 0.96 0.86 0.75

8 24.6 3.15 0.91 0.72 0.53

10 19.6 3.18 0.86 0.61 0.41

12 16.2 3.21 0.82 0.52 0.33

16 11.8 3.29 0.71 0.38 0.22

20 9.1 3.42 0.61 0.28 0.17
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that the GWR method can produce realistic solutions.

For solutions with speed-up factors up to 16, it was

found that the rms errors for rescaled sea level and for

barotropic current components were less than for a flat

bottom case without wave distortion. Errors were

largest along the western side of the basin and along

oceanic ridges and areas of similarly steep bottom

topography.

Solutions for the barotropic mode are remarkably

good for speed-up factors of about 8 for the case of

monthly forcing in a tropical ocean. For high-fre-

quency wind forcing, i.e. less than 30 days period,

the oceanic response in mid-latitudes is essentially

purely barotropic, but very weak compared to the

response to seasonal forcing. In order to model the

resulting flow adequately, Tobis (1996) found that

the speed-up factor should not exceed 4. However,

these high-frequency barotropic flows have not been

demonstrated to be of importance for climate simu-

lations.

When the GWR speed-up factor is increased, the

error increases, but the same is true for implicit

methods as the time step is increased to speed-up

calculations. The major advantage of the GWR

method compared to other methods is its easy imple-

mentation and explicit time step that allows straight-

forward parallelization of the code. For a layer model,

the method does not require a separation of the

barotropic mode, and can be implemented by minor

changes to the code. For an OGCM with time split-

ting, a single parameter can substantially reduce the

computational cost. The method can be used to save

significant computational resources for model testing,

for parameter studies, or for simulations of tropical

oceans where high accuracy of the barotropic mode

may not be needed. However, as the vertical resolu-

tion of the model increases, the relative cost of the

barotropic calculation decreases, and the benefit of the

GWR method will be reduced.
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