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ABSTRACT

The gravity wave retardation (GWR) method is a simple technique that allows layer models to include bottom
topography. Here the method is applied, and its accuracy is evaluated, for monthly climatological wind forcing
in an Indian Ocean model with realistic bottom topography. This is an extension of previous studies where the
GWR method was applied to idealized wind forcing in oceans with idealized basin geometry. Comparison to a
model integration with a flat bottom demonstrates that GWR integrations with speedup factors of up to 16 indeed
capture the influence of the bottom relief and have less error in the deep volume transports. For a speedup factor
of that magnitude, a GWR integration is also found to have less error than a reduced gravity model simulation.
It is concluded that integrations using the GWR method give remarkably good results for the upper-layer
circulation as well as the deep flow with a speedup factor of up to 8.

1. Introduction

In the open ocean, external, or barotropic, gravity
waves propagate with phase speeds exceeding 200 m
s21. For computationally efficient ocean models this im-
plies that this mode should either be entirely removed,
or solved by a different method than used for the in-
ternal, or baroclinic, modes.

By applying a rigid lid, (e.g., Bryan 1969; Semtner
1986) the external gravity waves are removed, while
planetary waves are retained. This has been the classical
approach used in ocean modeling. A second method is
to apply a mode-splitting technique to ocean models,
integrating the barotropic mode with a smaller time step
(Simons 1974; Madala and Piacsek 1977). This method
has been successfully applied to sigma-coordinate mod-
els (Blumberg and Mellor 1987), z-coordinate models
(Killworth et al. 1991), and of particular relevance for
this study, to the Miami Isopycnic Coordinate Ocean
Model (MICOM; Bleck and Smith 1990) and the Hall-
berg Isopycnal Model (HIM; Hallberg 1997). However,
as shown by Higdon and Bennett (1996), the mode split-
ting as applied in the original MICOM model can lead
to instabilities, and a complete mode separation is not
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trivial to obtain. Details about mode splitting in MICOM
and HIM can be found in Higdon and Bennett (1996),
Higdon and de Szoeke (1997), Hallberg (1997), and
Higdon (1999).

In the tropical oceans, where the barotropic modes
are of less importance, reduced gravity models may be
applied. That method assumes one or more active layers
over an infinitely deep abyss and removes all barotropic
modes, (e.g., Busalacchi and O’Brien 1980; Jensen
1991).

A simple way to include finite depth in layer models
is to reduce the speed of the barotropic gravity waves
(Jensen 1996; Tobis 1996). This method of gravity wave
retardation (GWR) allows a relatively long time step
compared to the undistorted case, while keeping the
integration scheme explicit. In Jensen (1996) it was
demonstrated that the GWR method gave very good
results under steady wind forcing for a flat bottom ocean
as well as with bottom topography. Tobis (1996) in-
vestigated cases with seasonal wind forcing for two lay-
er models with a flat bottom. However, both studies were
limited to idealized ocean basins and forcing.

For steady-state calculations in nonstratified coastal
models, Hearn and Hunter (1987) and Hunter (1990a,b)
used a reduced value of the acceleration of gravity in
order to reach equilibrium solutions with much reduced
computational effort. For the stratified ocean, Bryan
(1984) devised a method for accelerated convergence
toward a steady state by compressing timescales for all
ocean waves. However, both these methods distort the
solutions severely for time-dependent problems.

The main advantage of the GWR method is its simple
implementation. However, since the method does re-
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quire a substantially shorter time step than required for
the baroclinic mode, its efficiency compared to mode-
splitting methods decreases as the number of layers in-
creases. For instance, in MICOM, the computational
time for a barotropic mode time step is about the same
as for the baroclinic mode for a single layer (Bleck and
Smith 1990). If we assume a barotropic gravity wave
speed of c0 5 240 m s21 and a sum of internal gravity
wave speed and advection velocity of c1 5 4 m s21, we
would need c0/c1 5 60 barotropic time steps per bar-
oclinic time step. However, since MICOM uses a leap-
frog scheme for the internal mode and a forward–back-
ward scheme for the barotropic mode, only 30 baro-
tropic steps per baroclinic step is needed. The compu-
tational work is then proportional to N 1 c0/c1, where1

2

N is the number of layers. With the GWR method, the
work compared to a single layer is N gc0/c1, whereÏ
1/ g is the speedup factor. For a speedup of a factorÏ
of 8, and c0 and c1 as above, we find that the GWR
method is faster than mode splitting for up to four layers.
However if the same numerical scheme is used for both
the barotropic and baroclinic modes, the GWR method
is most efficient for up to nine layers in this example.
Clearly, mode splitting is needed for a large number of
vertical layers, and although the GWR method could be
applied to the barotropic mode in order to increase the
short time step, the benefit of doing so decreases with
vertical resolution.

In this paper, the GWR method is applied to the trop-
ical Indian Ocean with monthly climatological wind
forcing to determine the errors associated with the meth-
od for more realistic circulation models. A comparison
with a reduced gravity model is also included to provide
a practical lower limit on the acceptable quality of the
GWR solutions. One of the main questions is if, by
adding bottom topography and using a small GWR fac-
tor, we can improve upon the reduced gravity model
results, without a substantial increase in computational
requirement, or if the upper-layer results might get ad-
versely affected.

The Indian Ocean has a very large seasonal cycle due
to the Indian monsoon and the associated ocean currents
have high variability, including strong, western bound-
ary currents and seasonal eddy activity. This makes it
a challenging test case for applying the GWR method
to tropical oceans.

2. The gravity wave retardation method

a. Background

The method of gravity wave retardation as applied
here is given in detail by Jensen (1996) and is briefly
outlined below. The idea of GWR is based on the meth-
od of artificial compressibility (Chorin 1967), in which
an artificially reduced value of the sound speed, cs, is
used to slow down the propagation of sound waves. The
continuity equation for a compressible fluid is

1 ]p
5 2= · u, (1)

g* ]t

where 1/g* is the compressibility and g* 5 . Here2rcs

r is the density, p is the pressure, and u is the velocity.
If we vertically integrate the time discretized version

of the continuity equation [see Eq. (A9) in the appen-
dix], we obtain by use of the equation for the surface
elevation [(A3)]

Nn11 n21 nh 2 h g ]U ]i n5 2 1 (V cosu) , (2)O i[ ]2Dt a cosu ]f ]ui51

where n refers to the time level, the sum is over all N
model layers, and a factor g has been included in anal-
ogy with (1). Other symbols are defined in the appendix.
A leapfrog discretization is shown for the purpose of
illustration only, since (2) is not actually used in the
model. Instead, the surface elevation is calculated by
(A3), and in the pressure gradient term for layer j, (A2),
the surface elevation is multiplied by a free parameter
g, namely,

j21

=P 5 g gr =h 2 [(r 2 r )=H ] . (3)Oj j j i i5 6i51

In the next section, it will be shown how this parameter
changes the surface gravity wave phase speed by a factor
of the square root of g. We will refer to g as the GWR
parameter.

b. The GWR parameter

For the linear model problem the vertical modes are
found by computing eigenvectors for the matrix

r 2 rj min( j,i)
a 5 g 2 H , (4)ji 0 j[ ]rj

where H0j is the thickness at rest of layer j and rj is its
density (Jensen 1996). The eigenvalues of (4) are the
equivalent depths, so the corresponding phase speeds
are found by multiplication of gravity and taking the
square root. Similarly, for the reduced gravity model,
the phase speeds are computed from the eigenvalues of
the matrix

r rmin( j,i) ia9 5 2 H , (5)ji 0 j[ ]r rj N

where rN is the density of the abyssal layer at rest (Jen-
sen 1993).

In (4), the case of undistorted physics corresponds to
g 5 1, and choosing 0 , g , 1 will slow external
gravity waves down. In order to keep real eigenvalues,
that is, free wave solutions, it is necessary to choose
the GWR parameter, g, sufficiently large. As it is de-
creased, the barotropic wave speed approaches the first
baroclinic wave speed, and the associated eigenvectors
become aligned; that is, they will become identical. Se-
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FIG. 1. Vertical model structure with bottom topography confined
to the deepest layer.

lecting a GWR parameter too small will result in two
modes with complex conjugate eigenvectors and com-
plex conjugate eigenvalues, one mode being damped
and one growing mode being unstable.

For a two-layer model it has been shown (Jensen
1996) that the aji given by (6) will have real eigenvalues,
that is, have stable solutions, if

Dr
g $ 4 a(1 2 a), (6)

r

where Dr is the density difference between layers 2 and
1, and a is the ratio of the upper-layer thickness to the
total depth. The right-hand side of (6) has a maximum
of Dr/r for a 5 1/2. For a system with many layers,
choosing g . Drmax/r, where Drmax is the maximum
density difference between all layers, has been found
by experiments to be sufficient for stability.

Why is the external mode slowed down? The method
is equivalent to decreasing the density difference be-
tween air and water. The modified air density is

5 r0(1 2 g),r9a (7)

so if for instance g 5 1/64, and r0 5 1000 kg m23, we
find 5 984 kg m23. A physical interpretation of ther9a
limitation for accuracy is then that we need to keep the
density contrast to the modified air density significantly
higher than internal density differences in the ocean
problem we want to model, that is, as the practical limit
g k Dr/r0 suggests.

As a result of behaving more like an internal wave
along this modified air–sea system, the sea surface de-
viations become much larger than in reality (by a factor
1/g), while keeping the pressure gradients fairly accu-
rate. While this might suggest that the method is seri-
ously flawed with respect to sea level, and make com-
parison with satellite or tide gauge sea level measure-
ments impossible, a realistic elevation can be restored
by multiplying the model sea level output with a factor
g (Hearn and Hunter 1987; Jensen 1996).

The effect of the GWR method on gravity waves and
planetary waves depends on the stratification in the
ocean. For a two-layer model, an analytical expression
can be obtained (Jensen 1996), but for more realistic
models we need to rely on a numerical solution. For
this reason, the numerical model and its basic state will
be introduced next, before we further discuss the effect
of the method.

3. Numerical model

The ocean model is based on the hydrodynamical
multilayer model by Jensen (1991, 1993), modified to
include bottom topography (Jensen 1996) and mixed
layer physics. Since the wave dynamics and oceanic
adjustment on seasonal to interannual timescales essen-
tially are wind driven, we use a version of the model
without active thermodynamics in order to save com-
puter time.

The model equations are in spherical coordinates, so
they also apply for length scales larger than the oceanic
barotropic deformation radius. Consider an ocean con-
sisting of N layers of uniform density as shown in Fig.
1. The layers are labeled with increasing numbers down-
ward. The assumption that all layers have a positive
thickness is made. This implies that layers are not al-
lowed to surface or merge, and that the bottom topog-
raphy is always in the lowest layer. The model for-
mulation is given in the appendix and further details are
given in Jensen (1998).

Model initialization, boundary conditions, and forcing

The versions used here have five layers with bottom
topography confined to the deep abyssal layer or, alter-
natively, four active layers with an infinitely deep layer
below (4.5-layer model). The horizontal resolution is ⅓8
in the zonal and in the meridional directions. The av-
erage initial thickness is 80, 120, 250, and 600 m for
layers 1–4, respectively. For the finite-depth case, the
thickness of layer 5 varies initially between 150 and
4950 m, with an average of 3000 m. The densities of
layers 1–5 are 1023.6, 1025.4, 1026.5, 1027.2, and
1028.2, respectively, with a unit of kg m23. Bottom
topography is from the ETOPO5 dataset (National Oce-
anic and Atmospheric Administration 1988). Due to the
constraint that the bottom topography must be within
the the deepest layer, the total ocean depth is confined
to be between 1200 and 6000 m (Fig. 2); that is, depths
less than 300 m are considered land, and depths between
300 and 1200 m are set to 1200 m. For simplicity, all
boundaries were closed.

Wind stress is climatological monthly mean winds
from the European Centre for Medium-Range Weather
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FIG. 2. Bottom topography for the Indian Ocean model. Depth is given in 1000-m intervals.
Minimum depth is 1200 m and maximum depth is 6000 m.

FIG. 3. Phase speeds for the barotropic mode and the first baroclinic
mode as a function of the potential speedup factor, G 5 1/g1/2, for
the Indian Ocean model. For speedup factors less than 28.9, the
barotropic mode (medium dash) approaches the first baroclinic mode
(short dash) as g is increased, and the imaginary part (dash–dot)
remains zero. For larger values of G, two complex conjugate modes
exist. Propagation is determined by the real part (solid), while the
imaginary components correspond to a growing mode (long dash)
and damped (dotted) modes. The numerical model is only stable for
real phase speeds, so the maximum possible speedup is by a factor
of 28.9 with the given model stratification.

Forecasts reanalysis and has been interpolated to the
model grid using cubic splines in space, while linear
interpolation in time is done to each model time step.

4. Effect on wave propagation

a. Gravity waves

Figure 3 shows the phase speed of the barotropic and
the first baroclinic mode as function of the factor G 5
1/ g, by which external gravity waves are slowedÏ
down. For the initial stratification and average depth
used in our Indian Ocean model, we find that for g 5
1/833.25 or a potential computational speedup of G 5
28.9, the barotropic and first baroclinic modes become
identical with a phase propagation of 4.67 m s21. De-
creasing g further makes the numerical calculation un-
stable due to the growing mode. Although only of the-
oretical interest, we see that the damping or growth rate
becomes maximum near g 5 1/1600, after which it is
slowly reduced (Fig. 3).

In the shallower areas of the basin, the external phase
speed cannot be reduced as much as in the deeper parts
without causing instability. For instance, for a layer 5
depth of 1000 or 100 m rather than 3000 m, the insta-
bility sets in for g 5 1/564 and g 5 1/361, respectively.
However, the GWR parameter must be significantly
larger than these theoretical limits in order to produce
acceptable results. Using the guideline g . Drmax/r as
discussed earlier, we find for the stratification in our
model that we should choose g . 1/223, or a speedup
factor less than 15. In order to push the limits of the
method, we will include g 5 1/256 as one of the stan-
dard test cases.

Table 1 shows the phase speeds of the gravity waves
for the experiments with GWR factors in the range

1/400–1 and for the reduced gravity layer model. The
phase speeds of the first baroclinic modes are increased
by 15% for the reduced gravity model, and by 10%,
5.7%, and 1.2% for the finite-depth cases with GWR
factors of 1/400, 1/256, and 1/64, respectively. For high-
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TABLE 1. Gravity phase speed for external and internal modes
(m s21).

GWR
factor External

First
internal

Second
internal

Third
internal

Fourth
internal

1
1/64
1/256
1/400
4.5 layers

199.162
24.618
11.839

9.138
none

3.112
3.151
3.290
3.420
3.578

1.606
1.603
1.596
1.591
1.617

0.973
0.973
0.973
0.974
0.972

0.718
0.718
0.718
0.718
0.717

er-order baroclinic modes, the maximum error is less
than 1%.

b. Planetary waves

Jensen (1996) demonstrated that the phase error is
less for baroclinic Rossby waves than for baroclinic
gravity waves. The error of the energy propagation, that
is, the group velocity, is also small except for wave-
numbers near the inverse of the (unmodified) radius of
deformation. Here the group velocity is close to zero,
and any deviation will obviously result in relatively
large errors.

For the barotropic Rossby waves, short waves are
distorted less than long waves. Atmospheric distur-
bances have meridional scales of about 1000 km, and
barotropic Rossby waves with that wavelength will
propagate with 60%, 70%, or 80% of the correct speed
for g 5 1/100, g 5 1/64, or g 5 1/36, respectively (see
Fig. 6 in Jensen 1996).

For variable forcing, the Rossby wave response is of
critical importance. The maximum frequency of Rossby
waves, that is, those with zero group velocity, is given
by

bc
v 5 . (8)max 2 f

Tobis (1996), pointed out that at 308 poleward of the
equator, the minimum period is about 2.6 days for bar-
otropic Rossby waves. A GWR factor of g 5 1/100
would increase this period by a factor 10, and clearly
be a lower limit for a g that is able to provide a correct
barotropic Rossby wave response to monthly forcing.
However, it should be emphasized that the baroclinic
response, even with a GWR factor as low as 1/100, is
not significantly altered (Jensen 1996).

5. Experiments

The model is spun up from rest and the circulation
after 3 yr is investigated. While this is not sufficiently
long to spin up the flow to a quasiperiodic state in the
subtropics, it is quite adequate to estimate the accuracy
of the GWR method and makes it feasible to run several
cases.

The model has been shown to give a general circu-
lation in very good agreement with observations. For

the Arabian Sea, Jensen (1991) demonstrated that the
model currents agreed very well with observed features
(Schott 1983; Knox and Anderson 1985), such as the
reversal of the Somali Current, its northward volume
transport; the Great Whirl, and its northward migration
during the southwest monsoon. Potemra et al. (1991)
found that the model gave currents in the Bay of Bengal
in agreement with the available observations. For the
equatorial circulation, Jensen (1993) found remarkably
good agreement with the model subsurface currents and
the deep jets reported by Luyten and Roemmich (1982),
and with the surface currents from Rao et al. (1989).
Comparisons with observations in the South Equatorial
Current, the North Equatorial Current, and Monsoon
Current are also discussed in Jensen (1993).

Figure 4 shows the currents in the upper layer and
Fig. 5 shows its depth, which in this case corresponds
to a maximum mixed layer depth, since there is no heat-
ing or precipitation used in the forcing.

The control run was done without any reduction in
gravity wave speed and required a time step of 45 s.
Runs with GWR parameter, g, values of 1/25, 1/64,
1/100, and 1/144 used time steps of 200, 320, 360, and
450 s, respectively, while runs with g values of 1/256
and 1/400 used a time step of 600 s. The reduced gravity
model was also run with a time step of 600 s, although
a 1800-s time step is numerically stable. This was done
in order to keep the time truncation error and filtering
characteristics the same as for the g 5 1/256 and g 5
1/400 cases, so that any difference between the three
solutions is caused only by the differences in the treat-
ment of the barotropic mode, that is, filtering versus
slowed-down phase speeds.

For the purpose of demonstrating the errors associated
with the method, we choose to concentrate on the area,
208–108S, 438–708E, where errors are typical for the
computation. In the eastern part of the basin, errors are
most often smaller, while they tend to be larger in the
western part of the basin, where intense boundary cur-
rents exist. However, when computing the root-mean-
square (rms) errors, as, for instance, shown in Fig. 6,
the entire basin was used.

a. Upper-layer results

The upper-layer flows are only weakly affected by
the bottom topography. This was confirmed by run-
ning the control case (g 5 1) with a flat bottom and
the same average depth as in the full topography case.
As mentioned in the introduction, reduced gravity
models reproduce the observed flow very well, and
an important objective was to investigate if using a
small GWR factor, combined with bottom topography,
will improve the solution. The rms error was calcu-
lated for all cases, based on differences to the control
run. Figure 6 displays the rms error as a function of
reduction of the external gravity speed, for the re-
duced gravity model case, and for a case (g 5 1)
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FIG. 4. (top) Upper-layer currents during boreal winter and (bottom) boreal summer. Length of
vectors is proportional to the square root of the current speed. Unit is (m s21)1/2.

where the ocean depth has been replaced by its av-
erage value. Not surprisingly, the error generally in-
creases with increasing depth. The exception is the
error in the layer 4 thickness anomaly, which is small-
er than errors in thickness anomaly for layers 2 and
3 for all g , 1 cases and for the reduced gravity
model. It is also seen that the error in layer thickness
for the g 5 1/256 case is about the same as for the
reduced gravity case. Most importantly, it is not larg-
er.

For the zonal and meridional transports, the g 5 1/256
model results are significantly better than the reduced
gravity layer model results. Is this because some of the
effects of the variable topography on the upper-layer
flows indeed are captured or is it because a finite average

depth is introduced? To answer this question, the g 5
1 and the g 5 1/256 cases were repeated with a flat
bottom, but with the same average depth as in the pre-
vious cases. The rms errors for the g 5 1 case with flat
bottom is shown in Fig. 6 over the label flat, while the
flat bottom case with G 5 16 is shown with open sym-
bols.

Comparing the two g 5 1/256 cases, we see a sig-
nificant increase in error when excluding bottom to-
pography. The increase ranges from 5.5% in rms error
in layer 1 thickness anomaly to 53% in layer 4 thickness
anomaly. The error increase for the transport compo-
nents in layers 3 and 4 is about 30%. Using the g 5 1
with a flat bottom as a reference it is found that the
errors for reduced gravity case are larger than for the g
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FIG. 5. (top) Upper-layer thickness anomaly during boreal winter and (bottom) boreal summer.
Contour interval is 10 m.

5 1/256 flat bottom case, typically of the order 30%
larger. Finally, we see from Fig. 6 that the rms errors
in the case of a flat bottom and g 5 1 in general have
errors in layer 1–3 transport components of the same
order as for the g 5 1/100 case with bottom topography.
For layer 4, the errors are larger than for the g 5 1/256
case with bottom topography.

In conclusion we find that using a small GWR factor
does include important effects of the bottom topography,
but also introduces significant errors.

What kind of differences are found for the upper-
layer flows? Figure 7 shows typical differences in cur-
rents between runs with various configurations for the
area 108–208S and 438–708E. Variable depth influences
the baroclinic Rossby wave propagation,

v 1 ]D 1 ]D
25 2 b 1 f A /D 20 5 1 2[ ]k a ]u ka cosu ]f

2 2 2 2 213 (k 1 l 1 f /c9 ) , (9)0

given here for the case of weak topographic slopes
(Charney and Flierl 1981). Here v is the frequency; k
and l the zonal and meridional wavenumber, respec-
tively; f 0 is the Coriolis parameter; and b is its the
variation with latitude. The influence of bottom topog-
raphy is through the effect of the bottom slopes, =D,
reduced by , the square of the amplitude ratio of each2A 5

baroclinic mode in the deepest layer to the barotropic
mode, and through large-scale modification of the value
of the internal gravity wave speed c9.
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FIG. 6. (top) Rms error for layer thickness, (middle) zonal transport,
(bottom) and meridional transport as function of reduction factor in
external gravity wave speed (G 5 1/ g). The points above the labelÏ
inf deep show the rms error for the reduced gravity model case, while
the label flat is below the error for the flat bottom case without any
reduction in gravity wave speed. Units are m for layer thickness and
m2 s21 for transport components.

FIG. 7. Currents in layer 4 on 15 Jan after 1080 days of integration:
(a) control (g 5 1) with bottom topography, (b) g 5 1/256 with
bottom topography, (c) control (g 5 1) with flat bottom, and (d)
reduced gravity model. The vectors are proportional to the square
root of the current speed. Unit is (m s21)1/2. Maximum vector shown
corresponds to 0.3 (m s21)1/2 equivalent to a current of 0.09 m s21.
Longer vectors are truncated.

Since the vertical structure functions do change with
g, the effect of the bottom slopes will be different. The
first baroclinic mode is most affected by topography.
With the given model stratification, we find that for g
5 1, the amplitude in layer 5 is 20% of the barotropic
mode, so the influence of bottom slopes on the first
baroclinic mode is only 4% of that on the barotropic
mode. For g 5 1/36, 1/64, 1/100, and 1/256, respec-
tively, the relative amplitudes are 19.3%, 18.5%, 17.4%,
and 12.3%, reducing the impact on bottom slopes to the
range 3.7%–1.5%. Due to the internal gravity wave
speed effect, westward propagating Rossby waves ex-
perience higher than average propagation speeds east of
the region shown in Fig. 7, since the ocean to the east
is deeper than average (Fig. 2). Northwestward currents
associated with baroclinic Rossby waves (Fig. 7a; 208–
178S, 608–708E) will arrive later in case of the flat bot-
tom (Fig. 7c). This is seen by the eastward displacement
of this current system compared to the case with bottom
topography, while the reduced gravity case (Fig. 7d) has
the wave arrive too early. Largest differences of this
type occur in the western side of the basin, in part due
to accumulation of phase errors.

Errors are larger in the thickness anomaly (Fig. 6).
For our representative region the thickness anomaly
fields are shown in Fig. 8. For g 5 1/256, the thickness
anomaly field is only marginally better than for the flat
bottom case or the reduced gravity model. This is to be
expected, since the large artificial surface elevations as-

sociated with the GWR method must affect the layer
thickness.

The figures above emphasize the similarities rather
than the differences between the solutions. To reveal the
errors, the 3-month average (Nov–Jan) volume trans-
ports in layer 3 from the control run are shown in Fig.
9. Differences in transports between the control and
solutions with g 5 1/64, with g 5 1/256, and with
reduced gravity are shown in Figs. 9b–9d. The GWR
method has clearly smaller errors than the reduced grav-
ity solution, which have errors of order one. As noted
above, much of the error is due to phase differences,
caused by the infinite abyssal depth in the reduced grav-
ity model.

The similarities of the time-dependent solutions
through the season are shown in Fig. 10. The zonal
current component along 108S for layer 3 is shown for
the control case, the g 5 1/64 and g 5 1/256 cases,
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FIG. 8. Thickness anomalies (m) in layer 4 on 15 Jan after 1080
days of integration: (a) control (g 5 1) with bottom topography, (b)
g 5 1/256 with bottom topography, (c) control (g 5 1) with flat
bottom, and (d) reduced gravity model.

FIG. 9. Three-month averages (Nov–Jan) of volume transport per
unit area in layer 3 has been computed. The solution from the control
(g 5 1) with bottom topography is in (a). Differences between the
control and the other cases are shown as in (b), g 5 1/64 with bottom
topography; (c), g 5 1/256 with bottom topography; and (d), reduced
gravity model. The vector length is proportional to the square root
of the transport. Unit is (m s21)1/2. Maximum vector shown corre-
sponds to 8 (m s21)1/2, equivalent to a transport of 64 m2 s21. Longer
vectors are truncated.

and for the reduced gravity case. The most significant
differences are that the reduced gravity model, and, to
a less extent, the g 5 1/64 model have increased mag-
nitudes of the currents in the vicinity of 708–808E. Also
note that the maximum eastward current in that longi-
tude band occurs at day 200 for the reduced gravity
case, while the control has a maximum at day 230 with
magnitude reduced by about 30%.

b. Deep-layer results

If the solution in the upper layer is modeled well for
a small value of g, is it also the case for the deep flow?
If this is not the case, there would be little advantage
in using the GWR method compared to the reduced
gravity model, which of course does not provide a so-
lution for the deep flow. Figure 11 shows the rms error

for layer 5 thickness anomaly and transport components
as function of the speedup factor. The rms error for the
thickness anomaly was rescaled by dividing by a factor
of 10.

A control computation in an ocean with the same
average depth, but a flat bottom, has significant larger
errors than solutions with g 5 1/256 in the transport
components. However, the errors associated with the
deepest layer thickness anomalies are large (Fig. 11).
What is causing the large error in the deepest layer, when
g is decreased? It is clearly associated with the large
surface elevation anomalies inherent in the GWR meth-
od as discussed above and by Jensen (1996). In fact, if
errors in transport components are to be small, we see
from (A1)–(A3) that gradients in layer thickness must
increase to compensate for a decrease of g. Since large
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FIG. 10. Longitude–time plot of layer 3 zonal velocity along 108S
during the third year of integration: (a) currents from the control (g
5 1) with bottom topography, (b) g 5 1/64 with bottom topography,
(c) g 5 1/256 with bottom topography, and (d) reduced gravity model.
Contour interval is 0.8 cm s21 with dashed contours for negative
values.

FIG. 11. Rms error for layer 5 thickness H (circles), zonal transport
U (diamonds), and meridional transport V (plus) as function of re-
duction factor in external gravity wave speed (G 5 1/ g ). The labelÏ
flat is below the error for the flat bottom case without any reduction
in gravity wave speed (filled symbols). The rms error for the thickness
H has been divided by a factor of 10 for scaling. Units are m for
layer thickness and m2 s21 for transport components.

gradients are found in the deeper ocean, we find the
largest absolute error here.

A typical example of the differences between solu-
tions with different values of g is shown in Fig. 12.
Notice the currents in the solution with g 5 1/100 are
nearly identical to those in the control. For the g 5
1/256 case, we can identify differences such as a too
strong northeastward flow near 198S, 538E and a too
weak clockwise eddy in the region northwest of Mad-
agascar. On the other hand, the flat bottom case (Fig.
12d) is clearly unsatisfactory. Again, errors in the layer
5 thickness anomalies associated with the GWR method
are significant (Fig. 13), compared to the flat bottom
case. In fact, only the case with g 5 1/25 has smaller
errors, which also was seen from Fig. 11.

A key question is whether using a small GWR pa-
rameter will give a meaningful deep flow. Figure 14
shows the zonal transport in layer 5 after 3 yrs of in-
tegration. Even in the g 5 1/256 case, the overall spatial
structure is improved compared to the flat bottom case,
so topographic effects are represented fairly well. From
Fig. 11 we know that the rms error indeed is smaller.

Finally, it is of interest to examine the accuracy of
the time-dependent response. An important phenome-
non in the Indian Ocean is the strong semiannual equa-
torial deep zonal currents as observed by Luyten and
Roemmich (1982). For the upper layers, Jensen (1991)
found very good phase relations between reduced grav-
ity model solutions and the observations. Solutions from
the reduced gravity model or from models with g 5
1/256 and larger have no significant differences from
the control run. A flat bottom case reveals that bottom
topography does not play an important role for the upper
layers. The response in the deep layer is shown in Fig.
15 for the cases g 5 1, g 5 1/64, and g 5 1/256 as
well as for the flat bottom case with g 5 1. There is a
strong influence of the Chagos–Laccadive Plateau along
738E and to a less extent along the Ninety East Ridge
on the strength of the zonal currents near the topography.
This is reflected in the g 5 1/256 solution. However,
for that case the currents overflowing the ridges are too
intense, by about 25% compared to the control case.
The zonal current just offshore the African coast re-
verses annually, with eastward flow during the south-
west monsoon. In the control run, this takes place from
day 130 to day 260. In the g 5 1/256 case, its duration
is decreased to last from day 160 to day 240, while the
flat bottom case has the correct duration, but the east-
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FIG. 12. Currents in layer 5 on 15 Jan after 1080 days of integration:
(a) control (g 5 1), (b) g 5 1/100, and (c) g 5 1/256. Solutions in
(a)–(c) include full bottom topography. (d) Control (g 5 1) with flat
bottom. The vectors are proportional to the square root of the current
speed. Unit is (m s21)1/2. Maximum vector shown corresponds to 0.2
(m s21)1/2 equivalent to a current of 0.04 m s21. Longer vectors are
truncated. FIG. 13. Thickness anomalies (m) in layer 5 on 15 Jan after 1080

days of integration: (a) control (g 5 1), (b) g 5 1/100, and (c) g 5
1/256. Solutions in (a)–(c) include full bottom topography. (d) Control
(g 5 1) with flat bottom.

ward flow begins earlier, at day 110, and ends at day
240. Another discrepancy in the g 5 1/256 solution is
the absence of westward flow near the coast from day
330 to day 30 of the following year. On the other hand,
we find that the g 5 1/64 solution only has minor dif-
ferences from the control.

6. Summary and discussion

The theory behind the GWR method was briefly dis-
cussed. In principle the method is equivalent to increas-
ing the density of the air above the ocean and, thereby,
reducing the effect of gravity. The method is stable for
a speedup in excess of one order of magnitude compared
to the unmodified control case. However, in order to
keep errors within acceptable limits, the speedup should
be limited to a factor of 8–16, depending on the appli-
cation.

It was demonstrated that bottom topography im-
proved upon the intermediate layer solution compared
to the reduced gravity layer model, even with a speedup
factor of 16. However, for the deep flow, it was found
that speedups in excess of a factor 8 produced errors
that in some cases are too large, if the abyssal flow is
of interest. This is similar to what is found with implicit
methods, where time-dependent solutions with Courant
numbers over 10 generally have unacceptable large er-
rors. Tobis (1996) also found that results with a speedup
factor of 8 gave qualitatively very good results for ide-
alized model domains, in particular for the Tropics. For
forcing that includes synoptic weather systems, the bar-
otropic response is lowpass filtered due to the existence
of a maximum frequency given by (6). This should be
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FIG. 14. Zonal transport (m2 s21) in layer 5 on 15 Jan after 1080 days of integration: (top left) control (g 5 1), (bottom
left) g 5 1/100, and (top right) g 5 1/256. These solutions include full bottom topography. (bottom right) Control (g 5
1) with flat bottom.

kept in mind if the high-frequency response is of in-
terest.

It should also be pointed out that the GWR method
can be applied to the barotropic mode in an ocean model
that uses mode splitting, for instance, MICOM. Since
the computational speedup only applies to the barotropic
mode, the gain in efficiency becomes relatively unim-
portant as the number of layers increases. If we assume,
as in the introduction, that the workload of solving for
the barotropic mode is 30 times that of a single baro-
clinic layer, using a speedup factor of 8 would result in
speedups of the entire model of factors of about 4, 3,
and 2 for 5-, 10-, and 20-layer models, respectively.

However, the main advantage of the GWR method is
its simplicity, which makes it straightforward to include
bottom topography in reduced gravity models, and also
allows easy implementation on massively parallel com-
puters due to the explicit time integration scheme. The
method can be applied to any ocean basin, but is par-
ticularly well suited for tropical oceans where the bar-
otropic mode is less important. In that case a GWR
factor of about 1/64 will in most cases give satisfactory
results. For model testing and debugging an even small-
er GWR factor can be used to save substantial com-
putational resources. It is also useful for numerical ex-
perimentation where a large number of scenarios are
being explored for flows of interest, or if different forc-
ings are used. During the search, computations can be
done efficiently using a small value of the GWR factor,

which, after selecting cases of particular interest, can
be increased for better accuracy.
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APPENDIX

Model Formulation

a. Momentum equations in transport form

For each layer we define the vertically integrated vol-
ume transport components, Uj and Vj. The thickness of
layer j is Hj, and the vertically averaged density is rj.
The transport equation for Uj becomes

2]U U U V 2U V tanu1 ] 1 ]j j j j j j
1 1 2 2 f Vj1 2 1 2]t a cosu ]f H a ]u H aHj j j

2H ]Pj j
5 1 w U /H 2 w U /Hej j11 j11 e( j21) j jr a cosu ]fj

f1 T ,j (A1)

with a similar equation for Vj. Here g is the acceleration
of gravity, f 5 2V sinu is the Coriolis parameter where
V is the rate of rotation of the earth, and T j represents
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FIG. 15. Zonal velocity in layer 5 during the third year of integra-
tion: (a) control (g 5 1), (b) g 5 1/64, and (c) g 5 1/256. (d) Control
(g 5 1) with flat bottom. Contour levels are 0.8 cm s21 with dashed
contours for negative values.

turbulent stresses in each layer for the meridional, f,
or zonal, u, component. In (A1) the vertically integrated
pressure gradient is given by

j21

=P 5 g gr =h 2 [(r 2 r )=H ] , (A2)Oj j j i i1 2i51

where the factor g, if less than 1, slows down the phase
speed for the barotropic gravity waves. With N layers
the surface displacement h is given by

N

h 5 (H 2 H ), (A3)O i 0i
i51

and H0j is the thickness of layer j at rest.
The parameterization of turbulent momentum fluxes

is for the zonal direction

f,t f,bt tj j
f f fT 5 F 1 2 1 D , (A4)j j jr rj j

with a similar expression for the meridional direction.
In (A4), F represents the eddy stress due to unresolved
horizontal scales of motion, and t is the tangential stress
due to vertical friction. The superscripts denote the f
or u component and top or bottom of the layer, while

is due to internal stress within each layer. The formfD j

of these stress terms is analogous to anisotropic molec-
ular viscosity:

U 1j
f 2F 5 A H ¹ 2j j j 2 25 1 2H a cos uj

U V]j j23 (1 2 2 cos u) 1 2 sinu 1 2 6[ ]H ]f Hj j

Uj42 A H ¹4, j j 1 2Hj

2 22 2U ] U V ] UDt 1 1j j j j
2 1 , (A5)

2 2 2 2 21 2 1 2[ ]2 H a cos u ]f H a ]uj j

with a similar expression for meridional direction. Here
Aj is a constant eddy viscosity. The form of the differ-
ential harmonic operator on the velocity is that given
by Semtner (1986). The biharmonic friction coefficient
A4,j is constant for each layer, and the nonlinear, veloc-
ity-dependent eddy viscosity is of the form given by
Abbott et al. (1981). The latter term is part of the third-
order correction to the central, second-order finite-dif-
ference approximation of the nonlinear terms in the mo-
mentum equation. However, since the net effect is to
selectively diffuse high velocity shear, it is appropriate
to include them explicitly as an additional eddy vis-
cosity. A harmonic eddy viscosity of 1000 m2 s21 and
a biharmonic viscosity of 25 3 109 m4 s21 were used
in the model runs. Along coastal boundaries the vorticity
transfer is controlled using a no-slip boundary condi-
tion.

The vertical stress for the zonal direction at the top
of each layer is

U U 2j21 j
f,t ft 5 t d 1 r A 2 (1 2 d ),j w 1j j z 1j1 2H H H 1 Hj21 j j21 j

(A6)

with equivalent expressions for the meridional direction
and for the bottom layer. In these expressions, tw de-
notes a wind stress, dij is the Kronecker delta, and Az

is the vertical diffusivity.
The term D j represents a parameterization of small-

scale turbulent stress within each layer, shown here for
the zonal direction:

3Uc jtfD 5 2 . (A7)j 1 2H Hj j
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The term given by (A7) dissipates strong flow in thin
layers, which is a simple parameterization for transition
to turbulence within a layer.

Finally, the zonal wind stress component is computed
from

5 racd[(Ua 2 U1 /H1)2 1 (Va 2 V1 /H1)2]1/2ftw

3 (Ua 2 U1 /H1), (A8)

with an equivalent expression for the meridional direc-
tion. In (A8) ra is the density of air, Ua and Va are the
zonal and meridional wind velocity components, and cd

is a constant drag coefficient. Note that the stress is
based on the differential velocity between the ocean and
the wind rather than the wind velocity alone.

b. Continuity equation

The continuity equation becomes

]H ]U1 ]j j
1 1 (V cosu) 5 w 2 w . (A9)j ej e( j21)[ ]]t a cosu ]f ]u

The vertical transport velocity across the bottom of each
layer is we. These terms arise from entrainment by shear
instability and entrainment or detrainment by buoyancy
forcing and wind forcing, that is,

wej 5 djlwk 1 wsj 1 wdj 1 wnj, (A10)

where the first term is active only for the top layer. The
term wsj, due to interfacial stress, is positive for a layer
in case the bulk Richardson number becomes less than
a critical Richardson number, Ric (McCreary and Kundu
1988; 1989). The shear entrainment velocity is calcu-
lated as

2(Ri 2 Ri)cw 5 H Q(Ri 2 Ri), (A11)sj j ct Ri Rie c

where Q is the unit step function, which has the value
1 for positive arguments and 0 otherwise. The Rich-
ardson number Ri is calculated using finite differences
in the vertical.

Where prolonged convergence occurs, the layer thick-
ness may become rather large after some time. In the
real ocean, sinking water is subducted when the heat
flux into the ocean is positive. In order to limit the layer
thickness, a detrainment velocity is defined as

2(H 2 H )j max, j
w 5 2Q(B) Q(H 2 H ), (A12)dj j max, jt Hd max, j

where t d is a timescale over which the detrainment takes
place and B is the buoyancy flux. The depth where de-
trainment becomes active, Hmax,j, is a constant chosen
for each layer.

c. Mixed layer physics

The uppermost layer is subject to Kraus–Turner mix-
ing. The net production of turbulent kinetic energy
(TKE), q, is given by

H f H f1 13q 5 2m exp 2 u* 2 exp 2 BH , (A13)0 11 2 1 2ku* mu*

where u* is the friction velocity. The formulation fol-
lows that of Oberhuber (1993), with m0 5 1.2 and k 5
0.4.

For negative production of TKE (q , 0); that is, the
mixed layer is warming up or become less salty due to
net precipitation. In that case we set q 5 0 in (A13)
and solve for a new equilibrium depth, HMO, the Monin–
Obukov depth. We have detrainment toward HMO by
defining

hm 5 jMO max[min(HMO, H1), hmin]

1 (1 2 jMO)H1. (A14)

In order to keep a finite upper-layer depth, a minimum
depth, hmin, is specified. The minimum function ensures
that negative production of TKE cannot deepen the
mixed layer. The factor jMO, in the range 0–1, is intro-
duced to approach HMO over a finite time rather than
instantaneously. A value of jMO 5 0.1 is used.

When we have a positive production of TKE, (q $
0), either due to cooling, evaporation, or wind stirring,
the mixed layer entrains toward

hm 5 min{H1 1 2r1qDt/[g(r2 2 r1)H1], Hmax}, (A15)

where Hmax is a penetration depth scale for the surface-
generated TKE, the same as the allowed maximum depth
before detrainment takes place. The resulting detrain-
ment/entrainment velocity from buoyancy and wind
forcing is

wk 5 (hm 2 H1)/(2Dt). (A16)

d. Arbitrary Langrangian Eulerian coordinate control

Very thin layers or negative layer thickness presents
a numerical problem. The arbitrary Langrangian Euler-
ian (ALE) method (e.g., Benson 1992) consists of two
main steps. A Lagrangian time step that moves the in-
terface without any mass crossing it, followed by a re-
mapping step that repositions the interface and computes
the associated mass flux across it. In this model it has
been implemented as follows.

The term wnj in (A10) becomes nonzero if a layer
thickness is outside preset numerical limits. In that case,
excess divergence or convergence is computed as an
entrainment or detrainment rate across the base of the
layer and the interface is positioned at the level deter-
mined by this numerical limitation. As long as the di-
vergence violates the preset criteria, the layer thickness
is held fixed. However, the layer is not necessarily fixed
in the vertical, since other layers are able to change their
thickness. The formulation for the movement of coor-
dinates is as follows. The first step increases the en-
trainment into a thin layer to be as strong as into the
layer above, that is,
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wn1j 5 Q[wp( j21)]{max[wp( j21), wpj] 2 wpj}

3 Q(Hmin, j 2 Hj). (A17)

The second step limits the detrainment to half the layer
thickness or the entrainment to half the layer thickness
below, that is,

wn2 j 5 [1 2 Q(wn1j)] max[wn1j, 2Hj/(2dt)]

1 Q(wn1j) min[wn1j, Hj11 /(2dt)]. (A18)

Finally, the divergence and convergence are limited as
follows in the continuity equation. Step one is a pre-
dicted new layer thickness based on a pure Lagrangian
step:

5 2 Dt*[2=U 1 wpj 1 wn2j 2 we(j21],mH* Hj j

(A19)

where m 5 n or n 2 1 and Dt* 5 Dt or 2Dt, depending
on whether the scheme applied is Euler forward or leap-
frog. The second step is a remapping, which assures that
the thickness stays between Dmin and Dmax by applying

wnj 5 Q( 2 Dmin)Q(Dmax 2 )wn2 jH* H*j j

1 Q(Dmin 2 )(Dmin 2 )/Dt*H* H*j j

1 Q( 2 Dmax)(Dmax 2 )/Dt*.H* H*j j (A20)

The minimum layer thickness permitted in this simu-
lation was 20 m for all layers, while the maximum al-
lowed layer thickness was 400 m for layer 1, 800 m for
layers 2 and 3, and 900 m for layer 4. In the finite-depth
case, layer 5 was allowed to be 6000 m. Only the min-
imum layer thickness was encountered in the results
from this study.

The ALE method is quite promising for ocean mod-
eling. At Los Alamos National Laboratory, an effort is
underway to implement it in the Parallel Ocean Program
(J. Dukowicz and K. Bryan 1997, personal communi-
cation), and a similar hybrid coordinate is being con-
sidered for MICOM (R. Bleck and S. Dean 1997, per-
sonal communication).
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