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ABSTRACT

The effect of reducing the barotropic gravity wave speed in a layered ocean model in order to gain compu-
tational speed is explored. In theory the error in the propagation of baroclinic gravity waves typically is less
than 3% for a reduction of the external gravity speed by one order of magnitude. This is confirmed in a numerical
experiment. For baroclinic Rossby waves, the phase speed error is even less. The barotropic response is limited
to the reduced radius of deformation. The method, which we will refer to as gravity wave retardation, is therefore
applicable only for oceanic flows where the barotropic mode is of minor importance. It is demonstrated that the
method gives very good results for the baroclinic flow of an equatorial jet, spinup of a midlatitude ocean and
flow over a midoceanic ridge. The method can be considered as an alternative to multilayer reduced gravity
models, and has the advantage that bottom topography can be included.

1. Introduction

For phenomena with timescales larger than a few
days, external gravity waves do not contribute directly,
but play a role in the oceanic adjustment to changes in
external forcing. For basin and global-scale ocean mod-
els, the barotropic mode is often separated from the
internal modes and solved separately because of the
large phase speed associated with the gravity waves.
For instance, in the Bryan—Cox and Semtner—Chervin
type model, a rigid lid has traditionally been applied
and an elliptic equation for the barotropic streamfunc-
tion or surface pressure has been solved (Bryan 1969;
Smith et al. 1992). In a later version (Dukowicz and
Smith 1994), an implicit formulation for the free sur-
face elevation is used, which also requires solution of
an elliptic equation.

In the Blumberg—Mellor model (Blumberg and Mel-
lor 1987), the external mode is separated out and
solved explicitly with a short time step. A similar
method is used in the Miami isopycnal model (Bleck
and Smith 1990) by Killworth et al. (1991) for their
free surface version of the Bryan—Cox model and by
Zhang and Endoh (1992) for their Pacific Ocean
model. However, the coupling between the baroclinic
mode and the subcycled barotropic mode is not trivial
as reported by those investigators.
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By selecting a reduced gravity model with a single
active layer, Cushman-Roisin and O’Brien (1983)
eliminated the barotropic mode entirely. By substitut-
ing the internal gravity wave speed in the momentum
equation for the active layer with the analytical phase
speed for a two-layer ocean, they were able to include
effects of bottom topography on the baroclinic mode.
However, an extension of their approach to the multi-
layer models is not straightforward.

In the models above, the barotropic mode is either
eliminated in part (rigid lid) or entirely (reduced grav-
ity models) or separated out and treated specially (free
surface models ). While separating the barotropic mode
out in general requires decomposition onto vertical
modes (e.g., solving a general eigenvalue problem, see
Gill 1982, 159-162), a simple vertical average of the
equations are most often used to approximate the baro-
tropic mode. Because of this approximation, the re-
maining baroclinic equations may contain a small part
of the fast mode, and the models may be weakly un-
stable unless sufficient diffusion is added.

The Naval Research Laboratory model (Wallcraft
1991) uses a semi-implicit formulation for all gravity
waves, which requires normal-mode decomposition
and solution of an elliptic equation for each vertical
mode. The Hamburg isopycnal ocean model (Ober-
huber 1993) is fully implicit and also requires matrix
inversions.

In this paper, a method of reducing the external grav-
ity wave speed is explored. This is very similar to the
method of artificial compressibility used in computa-
tional hydrodynamics (Chorin 1967). The method
used here works by reducing the slope of the sea sur-
face in the momentum equation, which is equivalent to
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reducing the constant of gravity for the surface waves.
At a CHAMMP Science Team Meeting in 1994, John
Anderson and Michael Tobis presented modeling re-
sults where the latter technique was used. Further de-
tails on their method are given by Tobis (1996).

Bryan (1984 ) presented a method of distorted phys-
ics for accelerated convergence toward steady state for
ocean climate models. As in the method by Chorin
(1967), only the time derivative is changed, so the
steady solution (assuming that one exists) is the same
for the modified equations as for the original equations.
One consequence of that method is that wave speeds
are strongly reduced for gravity waves as well as plan-
etary waves, since it involves changing both the rate of
rotation of the earth and the acceleration of gravity.

A method of reducing the magnitude of gravity alone
has previously been applied to hydrodynamical models
for homogeneous seas (Hearn and Hunter 1987) and
in a modified form by Hunter (1990a,b). A similar ap-
proach is applied to a stratified ocean in this paper. The
main advantages of the method presented here are that
for layered models it is simple to use without a formal
separation of external and internal modes, and that the
internal (baroclinic) modes basically are unaffected.

2. The ocean model

The ocean model is that of Jensen (1991, 1993)
modified to include finite depth. In this paper, we apply
a rectangular coordinate system and choose z = 0 to be
the surface of the ocean at rest. Define vertically inte-
grated volume transport components U; and V; by

Zi+ 1
U = J. udz
g

between two surfaces z;(x, y, ) and z;,.,(x, y, t), with
an equivalent expression for V;. The thickness of the
Jjth layer defined by this integration is H; = (zj+1 — z;).

An ocean consisting of several layers of uniform
density is shown in Fig. 1. We assume that all layers
have a positive thickness everywhere. This implies that
layers are not allowed to surface or merge, and that the
bottom topography is always in the lowest layer. If the
density of the jth layer is given by p;, the zonal trans-
port Uj; for that layer becomes

au, 8 (U  d [UV, %,

— + =L+ =) -fV,= —gH,—L

EY ax<Hj ay\m ) TVi= T8,
U, U\ T

J
Similarly, for the meridional transport V; we have

(H

J

v, 9 (UV\ o [V? a®,
+— (L) + = (2 +fU; = —gH, —
EY 8x<Hj oy \m, ) T/ = T8
V. V. e
+ Vi =) - VL) +—6. (3
we{)etf) 7 o
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FIG. 1. Vertical structure of the isopycnal layered model.

In the equations above, g is the acceleration of grav-
ity, while 7 is the wind stress. We adopt the S-plane
approximation, that is, the Coriolis parameter is f = f;
+ By. The horizontal friction coefficients are A for har-
monic friction and A, for biharmonic friction. The ver-
tically integrated pressure anomaly is found using the
hydrostatic approximation. We define a dynamic height
as the vertically integrated pressure divided by gp;:

_2(pj—~p1)

i=1 7

J

(H; — Hoi), 4
where the depth Hy; is the layer thickness for an ocean
at rest, and the Boussinesq approximation, that is, np,/
p, = 7, has been applied. With N layers the surface
displacement 7 is given by

n= 2 (H; — Hy).

(5)
i=1
The continuity equation becomes
oH, (9U; 9V, )
—_ — + ) = AgV°H,, 6
ot < dx  dy aVH (6)

where it has been assumed that there is no mass
exchange between the layers and isopycnal thickness
mixing (Gent and McWilliams 1990) with a constant
diffusion coefficient A5 may be applied for non-eddy-
resolving applications.

Equations (2), (3), and (6) above are solved using
a leapfrog time integration scheme and centered-in-
space finite differences. The only exception is the dif-
fusion term, where an Euler forward scheme is used.
That term is computed at the oldest available time level,
which results in a time step twice as long as the leapfrog
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step. The pressure and the surface elevation are cal-
culated from the diagnostic Eqs. (4) and (5). Discret-
ization is on a C grid [see Arakawa and Lamb (1977)
for a discussion of the properties]. The use of a fully
explicit scheme severely restricts the time step since
the fast barotropic mode is included. An alternative to
the 1mp11c1t methods and time-splitting methods men-
tioned in the introduction, a 51mple way to slow down
these fast modes, is explored in the next section.

3. Method _ _
For compressible fluids, the continuity equation is
1 dp 4
— X = _v-u, 7
o u o
where 1/7, is the compressibility and y, = pc f:, where

¢, 1s the speed of sound. In the method of artificial
compressibility (Chorin 1967), an artificially reduced
value of ¢, is used to slow down the propagation of
sound waves. The method is actually applied. to solve
incompressible flow problems, where the speed of
sound equals infinity, but where sound waves inher-
ently are unimportant for the solution.
If we integrate the time discretized version of (6)
vertically, we obtain by use of (5)
) ;o (8)

oU? 8 Vi
Y 2 ( ox 8y

where n refers to the time level and a factor y has been
included in analogy with (7). The similarity of (7) and
(8) suggests that we can reduce the phase speed of the
external gravity waves by choosing the nondimensional
parameter y < 1. Hunter (1990a,b) implemented the
method for a homogeneous fluid by solving Eq. (8) for
a single layer. However, in this case, since (8) is not
solved, the method is introduced by rewriting (4) as

nn+l _ nnfl
2At

2 (o —pi)

i=1 J

@ =yn— (H; — Hy). €))

Note that only the part of the pressure related to the
surface deviation is modified. In contrast, the method
by Bryan .(1984), works by dividing the momentum
equations (except the time derivatives) by a constant
a > 1. Since both the pressure gradient term and the
Coriolis term are modified, the phase speed of Rossby
waves is strongly affected, except the longest waves
(see Fig. 1 in his paper). Since « is a global constant
that stretches time, all vertical levels are modified. Con-
sequently, baroclinic and barotropic modes are affected
in the same way. In the following sections we will find
" that this is not the case with the method used here.

a. Wave properties

The method will be 'analyzed using the linear equa-
tions without friction. For simplicity we assume that
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there are no gradients in the y direction. The equations
are

ou; 6<1>
= 10
and
av,
— +fU; =0, 11
ot U, (b
where ®; is given by (9) and 7 by (5).
The continuity equation becomes
H; au;
CL =—-— (12)

ot ox

Taking d/9¢ of (10), using (11) to eliminate V; and
(12) to eliminate H; in (9) and (5), we obtain

a? ‘ 62
+ A 13
< et ) =8 (13)
where the matrix A has the elements given by
a;; = [Y—M]Hw- (14)
Pj
The N eigenvalues, A", n = 0, ---, N — 1, of the

matrix a;; are the equivalent depths for the gravity
waves. Hence, the dispersion relation is

W — f2 — gh™k = 0 (15)

for the mode n Poincaré wave. The phase speed of the
gravity wave is calculated from (15) as ¢ = w/k.

b. Gravity waves in a two-layer model

For two layers we can easily find the eigenvalues of
the matrix

A= [ vHo,
(v — Apl/p)Hp

where the notation Ap = p, — p; and p = p, have been
introduced. The eigenvalues are then given by

1 1 4APH()1H02 12
—vyH*—-vyHl 1 - ———75— R 17
yYHESY ( oy H? (17)

')’HOI:l (16)

YHp,

pOD =

where H = Hy, + Ho,. Since Hy Hy, < H?/4, the last
term under the root is less than Ap/yp. If this last
term is much less than 1, we simply obtain the eigen-
values

APHmHoz

h® = yH, A" =
pH

(18)
which is the approximation for the eigenvalues given
in the literature for a linear two-layer model (e.g., Gill
1982, 121-122). Note that the internal mode to a first
approximation is independent of y, while the equiva-
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Fic. 2. Ratio R, of modified to exact equivalent depth (or phase
speed squared) for the internal gravity wave in a two-layer ocean as
a function of the retardation parameter y. Curves are shown for a
range of values of the parameter b defined in the text.

lent depth for the external mode has been decreased by
a factor y. The technique can therefore be referred to
as a gravity wave retardation (GWR) method for the
external mode, where v is the retardation parameter.
If we write Hy, = aH and Hy, = (1 — a)H, and use
(17), the ratio of A®" to the exact equivalent depth is

R Yy = (y*—yb)'"”?
S T I A

(19)

where the parameter b = 4a(1 — @) Ap/p has a max-
imum of Ap/p for « = 1/5. In all realistic cases the
stratification is weak, that is, » < 1 and Eq. (19) re-
quires that b < vy for real solutions. Assuming those
two conditions, and b = ey with € << 1, we find that 1
< R, < 2. As the wave retardation parameter vy is de-
creased for a given b << 1, for example, as v = b, R,
— 2 for the internal mode. This means that the phase

15
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FiG. 3. Ratio of modified phase speed to exact phase speed for baro-
clinic Rossby waves as function of ka, which is the wavenumber k mul-
tiplied by the exact Rossby radius of deformation a. Curves are shown
for a range of values of modified internal gravity wave speeds c¢’2.
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FIG. 4. As in Fig. 3 but for the group velocity
of long baroclinic Rossby waves.

speed of the internal gravity waves is increased by a
factor 42 and that the external wave speed approaches
the internal wave speed. Figure 2 shows the ratio R, as
a function of y for various values of the parameter b.
Typical, for basin-scale applications, » will be about
1072 or less. This corresponds to only a few percents
error on the phase speed. For the reduced gravity model,
where one assumes the lowest layer is infinitely deep, the
ratio corresponding to R, equals (H, + H,)H5". This
error will typically be of the same order or larger than the
phase error made using gravity wave retardation.

¢. Rossby waves

For the system of equations, modified by vy, we get
the usual dispersion relation for Rossby waves

fZ —1
w= —ﬁk<k2+12+—,‘;> , (20)

c

where (k, ) are the wavenumbers in the x and y direc-
tions, f, the Coriolis parameter, and ¢’ the modified
gravity wave speed. Errors in the gravity wave speed

1.5
c¢'2=1.05¢c2
----- ¢2=11 ¢?2 /
.......... ¢'2=12 c2 ’
149 e ¢2=13 ¢c2 /
----- c'2=14 c?
—e— ¢'2=15 ¢?

25
ka

FIG. 5. As in Fig. 3 but for the group velocity
of short baroclinic Rossby waves.
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will mostly influence long waves. Figure 3 shows the
relative phase speed of modified baroclinic ;Rossby
waves to the exact theoretical speed with y = 1. The
error is less than that for the gravity waves. However,
the group velocity is more sensitive to changes in grav-
ity wave speed. Waves with |1/k| smaller than the
Rossby deformation radius a or larger than about 2a,
have increased energy propagation speed (Figs. 4 and
5). In the vicinity of ka = 1, the group velocity van-
ishes, which obviously results in large relative errors.

Barotropic Rossby waves are slowed down when the
barotropic gravity wave speed is reduced. Figures 6 and
7 show the phase speed and group velocity, respec-
tively, relative to the correct speeds. Fortunately, baro-
tropic waves are short waves compared to the baro-
tropic deformation radius (about 2000 km). Typically,
ka 1s about 20 or larger, corresponding to wavelength
shorter than a/3. However, the reduction of the group
velocity is significant. For instance, if ¢? is reduced by
a factor 100, a wave with ka = 20, will have an 50%
error for propagation of energy. This implies that the
barotropic adjustment to changes in wind stress curl
will be too slow. However, it will still be much faster
than the baroclinic response, so in case of spinup of the
ocean toward a quasi-steady state, this should not cause
serious problems as the results shown in section 4c sug-
gest. o

d. Steady flows

“The simple case of steady response for a two-layer
model to a constant wind stress is a balance between
pressure gradient and wind stress in the case of no ro-
tation. Neglecting other frictional forces than the wind
stress, the linearized solution to Egs. (2)—(4) is

aH 1
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FIG. 6. As in Fig. 3 but for the phase speed
of barotropic Rossby waves.
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FiG. 7. As in Fig. 3 but for the group velocity
of short barotropic Rossby waves.
and

X
T P2

—_—, (22)
gpiHo(p2 — p1)

OH, _ <£z:_8_1_ 1)
ox P2

where Hy;, j = 1, 2 indicates the initial condition. Note
that the upper-layer thickness gradient does not depend
on vy, while the compensating gradient of the lower-
layer thickness is reduced in magnitude. Also note that
the surface elevation gradient, which is the sum of Egs.
(21) and (22), is increased by a factor 1/+y. This leaves
the pressure gradient unchanged for both layers. Since
the model surface elevation is artificially amplified,
Hearn and Hunter (1987) suggested that it should be
reduced by a factor y when compared to observations.

For flows where the Coriolis force f is important,
the length scale for adjustment is the Rossby radius of
deformation, c/f where c is the gravity wave speed. It
is obvious that this scale is dramatically reduced for the
barotropic component. We can therefore expect order
one errors for the barotropic component in boundary
currents and jets. Fortunately, the major western
boundary currents, such as the Gulf Stream, are mainly
baroclinic. :

e. Relation to reduced-gravity layer models

For multilayer reduced gravity layer models, the
deepest layer, N, is assumed infinitely deep, which re-
moves the barotropic mode entirely. In that case the
dynamic height is given by

N—1
=3 L) (g Hy)
i=1 PN
-1

_Z(Pj_Pi)

i=1 J

(H; — Hyi) (23)

(Jensen 1991). The relative density difference between
the upper ocean and the deep ocean, Ap/p is typically
3 X 1073, This suggests that we can choose values of
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p+ Ap 110 m
p+2Ap 100m

F1G. 8. Vertical cross section of the initial condition
for internal wave propagation test.

v down to that value, if we are not interested in the
barotropic mode.

4. Examples of applications
a. Internal gravity waves

First we consider an infinitely long channel with flat
bottom. It is assumed that there are no variations in one
of the horizontal directions, and that there is no rotation
(f = 0). A harmonic diffusion coefficient of 50 m* s~
for momentum was applied and the grid spacing was
11 km. The channel has three layers, each 100 m thick
on average, making the total depth 300 m. The density
jump between the layers is constant (1.55 X 1073
kg m™*). This depth and stratification results in a long
surface gravity wave speed of 54 m s ', and internal
gravity wave modes with phase speeds of 1.215 m s ™
and 0.702 m s~'. Selecting y = 1/64, the wave speeds
are modified to be 6.618, 1.246, and 0.700 m s~'. The
first baroclinic mode can consequently be expected to
propagate with a speed that is 2.6% too fast.

In this experiment there is no external forcing. The
initial condition (Fig. 8) is a steplike change of 20 m
in upper-layer thickness, compensated by the thickness
of layer 2, so that layer 3 is unperturbed. The surface
is level, which means that there are no pressure gradi-
ents in layer 1 at the onset. In layer 2 and 3 there is a
horizontal pressure discontinuity (high pressure to the
right in Fig. 8), which accelerates the flow in the di-
rection of low pressure.

The external gravity wave elevates the surface to the
left (caused by flow toward low pressure in layers 2
and 3) and lowers it to the right. This surface front
moves away from the discontinuity with the fast exter-
nal gravity wave speed.

Away from the initial discontinuity, the thickness of
layer 2 is nearly constant until the front associated with
the 2 vertical mode passes. This is because flow in layer
3 compensates the transport in layer 1. A projection of
the solution on vertical modes ( see Lighthill 1969) also
reveals a very small amplitude of the 1 vertical mode
in layer 2.

After passage of the fronts, the final stage is a flow
from left to right in the top layer, with weaker flows in
the opposite direction in the two lower layers. Since
there is no rotation, all available potential energy has
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been converted into kinetic energy. For similar exam-
ples see Gill (1982, 110 and 164).

Figures 9a,b show the thickness of layer 1 and the
associated currents in a x—f diagram for y = 1 (we will
refer to that as the standard case) and y = 1/g4. It is
seen that the solutions are very close, with a slight in-
crease (3%) in the 1 baroclinic wave speed and no
difference in the 2 baroclinic wave speed, as predicted
by linear theory. Note that no currents appear for a
while in Fig. 9b. This is because the external gravity
wave has been slowed down. For the standard case, the
external wave propagates out of the area in less than
2 h, which is too fast to be visible in Fig. 9a, so it
appears as if very weak currents (appearing only as
dots in Fig. 9a) exist at t = 0.

While the correct surface elevation is less than
0.02 m, the case with reduced wave speed have devi-
ations up to 0.9 m. This results in an error for the baro-
tropic mode of about 0.01 m s ™', while the magnitude
of total velocity is 0.1 m s ~'. However, the propagation
of the baroclinic waves and the baroclinic currents are
well represented.
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b. Response to zonal equatorial wind e

In the tropical ocean the barotropic mode is less im-
portant than in midlatitudes. The equatorial response of
the Yoshida jet (Yoshida 1959; Gill 1982, p. 459) is
therefore considered next. An equatorial S-plane ocean
is used with dimensions 7150 km (east—west) and
4400 km (north—south). This corresponds to 65° in
longitude at the equator and from 20°S to 20°N in lat-
itude. Periodic boundary conditions are used in the
east—west direction, while walls limits the ocean at the
southern and northern boundaries. The horizontal res-
olution is 55 km, a harmonic diffusion coefficient for
momentum of 500 m* s ! was applied, and three layers
of 100-, 100-, and 2000-m depth were used. The den-
sity jump across each layer is the same as in the pre-
vious example. This results in gravity wave speeds of
147, 1.88, and 0.749 m s~'. After applying a steady,
spatial uniform wind stress (0.1 N m~?) for 10 days the
jetis well developed. For y = 1/256, the maximum error
in the zonal baroclinic velocity field is only 0.25% in
layer 1 and up to 3% in layer 3. The largest error ap-
pears in the lower-layer thickness anomaly, which is
reduced as discussed in section 3d. Instead of a positive
anomaly of about 4 m, the anomaly goes to zero for
decreasing y = 1/256 (Fig. 10). The barotropic solution
is an equatorial jet trapped within a few equatorial
Rossby deformation radii (c/8)"* where c is the grav-
ity wave speed. Outside the region defined by the de-
formation radius, based on the retarded wave speed, we
can expect large relative errors, since the baroclinic
currents are weak for this test case. Within that region,
the baroclinic flow is strong, and relative errors will be
small. As shown in Fig. 11 the barotropic mode has a
much reduced radius of deformation for v < 1, and
order one errors will obviously occur for this mode
away from the equator. In particular, the divergence of
the retarded flow is concentrated in a much smaller area
than in the standard case. Associated with the diver-
gence is a decrease in total fluid depth, mainly due to
areduced layer 3 thickness. The tendency for the baro-
tropic flow is to cancel the baroclinic flow in layer 3 in
the retarded wave case. This is to be expected, since
layer 3 is much deeper than the two upper layers. For
that layer structure, applying the GWR method as in
Eq. (9) with y < 1, corresponds essentially to using a
reduced gravity layer model, that is, Eq. (23).

A dynamically similar situation occurs when a
coastal jet is forced with an alongshore wind that de-
cays offshore. Large errors appear in the barotropic
flow only offshore, outside the region whére the baro-
clinic part of the coastal jet dominates. However, in
shallow coastal areas, the surface elevation error (sev-
eral meters) becomes relatively large and introduces
additional errors.

¢. Spinup of midlatitude ocean

For climate modeling it is a key point whether the
quasi-steady, large-scale circulation is modeled fairly
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F1G. 10. Baroclinic part of the flow in layer 3 at day 10 with y = 1
(a) and y = ljs6 (b). Only a small difference in the contours of

“thickness anomaly for layer 3 is seen. Contour level interval is 1 m.

Grid spacing is 55 km.

accurately. We consider a rectangular ocean, which
spans 4763 km in the zonal direction and 4400 km in
the meridional direction (10°~50°N). The S-plane ap-
proximation, centered on 30°N, is used. The horizontal
resolution is 47.6 km in the zonal direction and 55 km
in the meridional direction. Three layers of 200 m, 200
m, and 1600 m thickness, respectively, were used. The
time step ranged from 100 s (no retardation) to 1600 s
(y = 1/256). Harmonic and biharmonic diffusion were
used in the momentum equations, with coefficients of
5000 m*s ! and 2 X 10" m*s™!, respectively. Iso-
pycnal thickness diffusion, using a coefficient of 5000
m? s ', was also applied. The relatively high values for
diffusion enables the western boundary current to be
resolved and limits the effects of nonlinear momentum
advection, that is, by providing low—Reynolds number
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FiG. 11. The barotropic currents and surface deviation after 10
days. Without gravity wave retardation, the barotropic equatorial jet
is wide (a). For a large reduction in external gravity wave speed (a
factor of 16 is used here), the barotropic part of the jet is narrower
due to the reduced Rossby radius of deformation (b). Contour level
intervals for the surface deviation are 0.01 m (a) and 1 m (b).

solutions, which may be compared without any time
averaging.

The ocean was spun up from rest with a zonal wind
stress varying with latitude as

7* = —0.1 cos(%) (N m™?),

y

(24)

where L, is the north—south length of the basin, and y
is measured from the southern edge. In addition, the
wind stress is tapered linearly toward zero within a 550-
km-wide zone along the northern and southern bound-
ary (see Fig. 12). This is done in order to avoid up-
welling and downwelling along the artificial northern
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and southern boundaries. The magnitude of the wind
stress has been linearly increased from zero to the value
given by Eq. (24) over 10 days and then held constant.

In the following, the depth-averaged currents are re-
ferred to as the barotropic part of the flow, although
this is not exactly true as discussed in the introduction.
Similarly, the total flow minus the depth-averaged flow
will be referred to as the baroclinic part. The depth-
averaged currents and surface displacement (multiplied
by y) after 360 days of integration are shown in Fig.
12 without retardation, with vy = /g4, and with y
= 1/256. The effect of slowing down the gravity wave

wind stress

4 cm/s

longitude

FiG. 12. Barotropic circulation of three-layer ocean with a flat bot-
tom after 360 days of integration with y = 1 (top), ¥ = /g4 (center),
and y = 1/356 (bottom). Current vectors larger than 4.0 cm s~ have
been truncated. Contours show the total depth anomalies muitiplied
by v (corresponding to a realistic surface deviation) in meters. Con-
tour interval is 0.025 m.
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FiG. 13. Baroclinic circulation of three-layer ocean with flat bottom after 360 days of spinup. The flow in
layers 1-3 is shown from top to bottom. Isolines show layer thickness anomalies for each layer with a 5-m
contour interval. Results without gravity wave retardation (left) and with a reduction of the external gravity
wave speed by a factor 16 (right). Current vectors larger than 1.0 cm s™' have been truncated. -

speed, and consequently the barotropic Rossby wave
propagation (see Figs. 6 and 7), is to reduce the overall
barotropic response. For y = 1/g4, the results are rea-
sonable, with typical errors of about 20% or less in the
barotropic current speed. For vy = 1/25¢, the barotropic
currents are only about 40% of the correct magnitude.
The actual amplitude of the model surface elevation
anomalies increases with increased retardation. For y
= 1/756 and y = 1/g4, the maximum amplitude is about
40 and 10 m, respectively, compared to 25 c¢m for vy

= 1. However, when multiplied by y (Hearn and Hun-
ter 1987), the surface elevations for the GWR cases
compare fairly well with the standard case.

The baroclinic part of the currents are shown in Fig.
13 for the correct gravity wave speed (left) and for y

‘= 1/256. The baroclinic currents are typically slightly

larger in magnitude for the case with gravity wave re-
tardation (by about 10% for vy = 1/35¢). However, the
results in Fig. 13 are remarkably similar given the fac-
tor of 16 in computer time between the two computa-
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FIG. 14. As in Fig. 12 but for flow over ridge.
Contour interval is 0.05 m.

tions. We note that the thickness anomaly for layer 3
is significantly reduced compared to the standard case.
This is associated with the change in total depth as we
observed in Fig. 12.

The model was also applied to the barotropic case
with the same forcing. The errors were smaller than for
the case with stratification, but the intensity of the cir-
culation was also weakened with increasing retarda-
tion. As in Fig. 12, the error is largest in the north,
where the adjustment time for the ocean is the longest.

d. Flow over midocean ridge

Given the encouraging results for a flat bottom, it
would be interesting to see if the method would work
as well when bottom topography was added. The case
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from the last section was repeated with a north—south
aligned ridge in the center of the basin. The ridge varied
as a cosine function (Fig. 1) with an amplitude of 800
m, which is half the thickness of the lower layer. The
width of the depth anomaly was 24% of the width of
the basin. Figure 14 shows the barotropic part of the
flow (v = 1, 1/64, and 1/35¢) and Fig. 15 the baroclinic
part (y = 1 and 1/25¢). The ridge strongly modifies the
flow in all three layers. There are essentially separate
eastern and western circulation cells. The results are
better than in the flat-bottom case, most likely due to a
shorter spinup time for the reduced effective east—west
length scale of the circulation. Over the ridge, we can
in principle increase y without violating the stability
criterion. We tried to apply

= min Yo Drmax 1
Y D s

where D is the depth of the ocean, D,,,, is the maximum
depth, and vy, is the minimal vy used. However, the re-
sults were not as good as with a constant vy.

(25)

5. Discussion

By slowing down the gravity waves, we are distort-
ing the dynamics and introducing errors, and one might
question why an obviously less accurate method than
using the exact gravity wave speed is of any practical
use. Clearly, the objective is to save computer time.
This is also why implicit methods are used, but they
will also alter the solution of atmospheric and oceanic
flows by slowing down wave propagation, if Courant
numbers much larger than one are used (Grotjahn and
O’Brien 1976).

The method of artificially reducing the propagation
of external modes is useful for modeling oceanic flows
where the baroclinic modes dominate. For such flows,
the phase speed may be reduced by a factor up to 10
or more without significant errors. As shown in section
4, the baroclinic part of the flow was modeled remark-
ably well for very small values of y. The method does
slow down barotropic Rossby waves, energy propa-
gation in particular, so when the dynamics of these
waves are important, the phase speed of the external
gravity waves should only be decreased by a factor 4—
5. To emphasize the differences between the reference
solution and the GWR solution, we selected smaller
values of vy, than should be applied for applications
where the barotropic mode is of any interest.

The GWR method can be applied to spin up the
ocean for decadal simulations of seasonal forced oce-
anic flow. In the last few years of the simulation, the
external gravity wave speed can be gradually increased
to minimize etrors in the final seasonal circulation. The
method of Bryan (1984) is without question much bet-
ter suited for centuries of spinup of an ocean subject to
steady forcing. For time-dependent flow, short baro-
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FiG. 15. As in Fig. 13 but for flow over ridge. Contour intervals are 5 m (two upper panels) and 10 m
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clinic Rossby waves are important and can be more
accurately modeled using the method presented here.
The impact of using retardation methods on the oce-
anic heat transport still needs to be investigated. The
thickness anomaly of the lower layer is significantly
reduced when a very small value of the retardation pa-
rameter vy is used. This may result in errors in the heat
transport in the deep ocean. Because of the error in
lower-layer thickness, an error of the same order of
magnitude occurs in the total ocean depth and conse-
quently for the surface elevation. To compare model

surface elevations with observations, the model results
must be multiplied with the retardation parameter. The

* surface elevation results shown here are encouraging,

but if the barotropic radius of deformation is reduced
by a large factor, one cannot always expect to find good
correlations between model and observations.

The GWR method can also be used for preliminary
investigations, where very accurate solutions may not
be needed. This makes it possible to simulate a large
number of flow scenarios, which otherwise would be
prohibitive due to computational costs. Most impor-
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tantly, the method can be seen as a more general alter-
native to multilayer reduced gravity layer models,
which, in spite of the lack of the barotropic mode and
bottom topography, have been quite successfully used
for ocean modeling.
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