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Barotropic instability in the tropical cyclone outer region
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ABSTRACT: The growth of asymmetric perturbations and their interactions with the symmetric flow are investigated for
wind profiles in a tropical cyclone with instability in its outer region. Three tangential wind profiles are examined: TC1,
a strong barotropic instability profile in the outer region; TC2, a stable wind profile; and TC3, a weaker instability profile
comparing to TC1 with a larger distance between the inner negative and the outer positive vorticity gradient centres.

An eigenvalue analysis indicates that azimuthal wave-number two is the most unstable mode in both TC1 and TC3, with
an e-folding time-scale of about 1 and 9 days, respectively. Numerical simulations using a linear barotropic model, with an
initial asymmetry specified in the outer region, confirm the eigenvalue analysis. A mechanism is provided to explain the
difference between simulations in TC1 and TC2. In both the stable and unstable case, an inner asymmetry is induced by
the initial outer asymmetry acting on the symmetric vorticity gradient. Subsequently, the newly generated inner asymmetry
feeds back positively to the outer asymmetry with the unstable profile. Because of this positive feedback, the inner and
the outer asymmetries maintain an up-shear phase tilting, leading to a continuous energy transfer from the symmetric flow
to the asymmetric perturbation. In the stable TC2, the inner asymmetry could not amplify the outer initial asymmetry as
there is no basic-state radial vorticity gradient there. Also due to this feedback process, disturbances grow faster where
the (absolute) basic-state vorticity gradients are large. Therefore, the position of an initial disturbance plays a minor role
in determining the outcome of the system.

Simulations with a nonlinear barotropic model and a primitive equation model further confirm the significant weakening
of the maximum tangential wind due to the positive feedback process in TC1. Simulations for TC3 show a smaller change
of the symmetric tangential wind, as expected. Copyright c© 2009 Royal Meteorological Society
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1. Introduction

The stability analysis of discrete modes in symmetric vor-
tices is a topic of broad interest. Barotropic instability
was suggested by Staley and Gall (1979) as a possible
mechanism for destructive suction spots imbedded within
tornados. Gent and McWilliams (1986) examined several
different ocean current profiles for instability using the
quasi-geostrophic potential vorticity equation and found
that the most unstable mode can be internal or exter-
nal, depending on the sharpness of the wind profile.
Observational and model studies (e.g. Möller and Smith,
1994) show that a tropical cyclone (TC) may have an
annular ring of high potential vorticity (PV) with low
PV in the central region. Concentric eyewall patterns
are frequently observed in radar reflectivity (Black and
Willoughby, 1992). Deep convection within the inner
eyewall (large vorticity region) is surrounded by a nearly
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echo-free moat (low vorticity region), and further sur-
rounded by an outer ring of deep convection (relatively
enhanced vorticity region). The reversal of the radial PV
gradient near an eyewall might cause barotropic insta-
bility (Montgomery and Shapiro, 1995). The stability in
an annular vorticity region, representing an eyewall, was
examined within the framework of a linear and nonlinear
barotropic non-divergent model (Schubert et al., 1999).
Polygonal eyewalls are shown to form as a result of
barotropic instability near the radius of maximum winds
(RMW). Kossin et al. (2000) investigated both the insta-
bility across the outer ring of enhanced vorticity and the
instability across the moat. The former occurs when the
outer ring is sufficiently narrow and the circulation of the
central vortex is sufficiently weak. The latter occurs when
the radial extent of the moat is sufficiently narrow so that
a positive feedback may occur between the central vortex
and the inner edge of the ring.

Most previous studies were focused on the instabil-
ity near the TC inner eyewall region (e.g. Nolan and
Montgomery, 2000, 2002; Kossin and Schubert, 2001;
Nolan et al., 2001; Terwey and Montgomery, 2002; Nolan
and Grasso, 2003). However, recent singular vector (SV)
diagnostics by Peng and Reynolds (2006) indicate that the
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Figure 1. Radial (unit: 1000 km) profiles of the symmetric TC vortex from NOGAPS analysis for hurricane Isabel on 10 September 2003:
(a) tangential wind (unit: 50 m s−1), (b) angular velocity (unit: 5 × 10−5 s−1), (c) vorticity (unit: 5 × 10−5 s−1), and (d) vorticity gradient (unit:

5 × 10−11 m−1 s−1).

TC intensity forecasts are most sensitive to the initial state
where the PV gradient changes sign in the outer region,
located roughly 500 to 700 km away from the TC centre
(an example is given in Figure 1). This sign change repre-
sents a necessary condition for the barotropic instability
(Rayleigh, 1880) in the outer region. The SV analysis
suggests a possible new energy source/sink for TC inten-
sity changes, that is, the unstable growth of perturbations
associated with the instability in the outer region. This
study is dedicated to a theoretical investigation of how
asymmetric perturbations can grow under this type of
unstable mean profile and modify the mean state. We
will explore the specific process that causes the energy
transfer from the symmetric mean flow to the asymmet-
ric perturbation, as well as the interaction between the
perturbation and the symmetric mean flow.

The paper is organized as follows. Section 2 contains
the eigenvalue stability analysis for three different TC
wind profiles. In section 3, we discuss the dynamic pro-
cesses associated with asymmetric perturbation growth
based on the analysis of a linear non-divergent barotropic
model simulation. Nonlinear non-divergent barotropic
model simulations are discussed in section 4. Section 5
describes the results from a three-dimensional full physics
model. Simulations with initial disturbances placed at dif-
ferent radial positions are discussed in section 6. The
investigation for an unstable profile with a smaller scale

is discussed in section 7. Conclusion and discussion are
given in section 8.

2. Linear stability analysis

The SV analysis by Peng and Reynolds (2006) indicates
that the intensity forecast of a TC is most sensitive
to initial conditions at regions where the PV gradient
changes sign. An example is given in Figure 1 from the
Navy Operational Global Atmospheric Prediction System
(NOGAPS) analysis for hurricane Isabel on 10 September
2003. This vortex profile satisfies the necessary condition
for barotropic instability (Rayleigh, 1880). An analytic
expression is constructed to approximate the observed
wind profile with the following mathematic formula,
specified by the symmetric vorticity gradient:

∂ζ̄

∂r
= a1 exp[−0.5 × {(r − r1)/0.08}2]

+a2 exp[−0.5 × {(r − r2)/0.08}2], (2.1)

where r is the radial distance. Three different profiles
are investigated with different specifications of a1, a2, r1
and r2, where r1 and r2 determine the positions of the
minimum and maximum and a1 and a2 determine their
magnitudes. For TC1 (Figure 2, solid line), a1 = −40.0
and a2 = 6.0, that give the minimum vorticity gradient at
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Figure 2. Radial profiles of the idealized vortices for non-dimensional (a) tangential wind, (b) angular velocity, (c) vorticity, and (d) vorticity
gradient for TC1 (solid), TC2 (dashed) and TC3 (dash-dotted line).

r1 = 0.3 and the maximum vorticity gradient at r2 = 0.6.
There is a sign change of the vorticity gradient near the
radius of 0.5. For TC2, a2 = 0.0, so that there is no sign
change in the radial vorticity gradient and it corresponds
to a stable profile (Figure 2, dashed line). For TC3, all
parameters are the same as TC1 except r1 = 0.25. This
results in a larger distance between the locations of the
minimum and maximum vorticity gradient centres and a
smaller vorticity gradient (Figure 2(d), dash-dotted line).
TC1 has a maximum non-dimensional tangential wind of
0.80 (or a dimensional value of 40 m s−1) located at the
radius of 0.3 (300 km); TC2 has a maximum tangential
wind of 1.0 (50 m s−1) situated at the radius of 0.3
(300 km); and TC3 has a maximum tangential wind of
0.64 (32 m s−1) at the radius of 0.25 (250 km).

The instability of the three symmetric wind profiles
is examined with the eigenvalue analysis of a linear
non-divergent barotropic vorticity equation. The time
tendency of the perturbation stream function ψ ′(r, λ, t)

in cylindrical coordinates is governed by:

(
∂

∂t
+ v̄

∂

r∂λ

)
∇2ψ ′ − ∂ψ ′

r∂λ

dζ̄

dr
= 0, (2.2)

where v̄(r) is the basic-state (symmetric) tangential wind,
ζ̄ (r) = d(rv̄)/rdr is the basic-state relative vorticity,
(u′, v′) = (−∂ψ ′/r∂λ, ∂ψ ′/∂r) is the perturbation radial
and tangential wind, and ζ ′ = ∇2ψ ′ = ∂(rv′)/r∂r −

∂u′/r∂λ is the perturbation vorticity. Assume that the
perturbation stream function has a solution in the form
of ψ ′(r, λ, t) = ψ̂(r)ei(kλ−ωt), where k is the azimuthal
wave number and ω the complex frequency, we obtain
from (2.2) an ordinary differential equation for ψ̂(r):

{
r

d

dr

(
r

dψ̂

dr

)
− k2ψ̂

}
ω

= k
v̄

r

{
r

d

dr

(
r

dψ̂

dr

)
− k2ψ̂

}
− kr

dζ̄

dr
ψ̂, (2.3)

where ω = a + bi. For a given wave number k, b >

0 denotes that this wave is unstable and the non-
dimensional growth rate is b. To solve (2.3), a central
difference is applied to approximate the radial derivatives,
with vanishing stream function and its gradient as the
boundary conditions at the radial end points.

Figure 3(a) shows the growth rate as a function of
the wave number for the three radial wind profiles, TC1,
TC2, and TC3. As expected, the TC2 profile is stable. For
TC1, the wave-number two is unstable with a growth rate
b = 0.21283, corresponding to an e-folding time-scale of
26 hours. A weaker wave-number two instability is found
in TC3, with a growth rate b = 0.02590 and the e-folding
time-scale of 215 hours.

In TC1, the most unstable mode has a maximum
located at r = 0.3 where the (absolute) maximum vor-
ticity gradient is located, and a second, much weaker,
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Figure 3. (a) Growth rates as a function of wave number for TC1 (solid
line), TC2 (dashed line) and TC3 (dash-dotted line) and the vorticity

patterns of the most unstable mode for (b) TC1 and (c) TC3.

maximum located at r = 0.55 (Figure 3(b)). In TC3, the
locations of the maxima are slightly inward than in TC1.
The result suggests that, even if the unstable profile is
in the outer region, the asymmetric perturbation devel-
ops most rapidly in the inner region near the maximum
negative vorticity gradient centre.

3. Linear barotropic model simulations

Schubert et al. (1999) and Kossin et al. (2000) have the
analytic solution for a given piecewise-constant vorticity
profile for a TC-like vortex with the instability near the
TC inner core region. The eigenvalue analysis we carried
out for instability in the TC outer region indicates an
unstable growth of the asymmetric perturbation, with
its maximum growth near the radius of the maximum

wind. How does a rather weak outer instability lead
to the growth of inner asymmetries? This motivates
us to further conduct linear non-divergent barotropic
model simulations to understand how the asymmetric
perturbation gains energy from the symmetric vortex.

The governing equations for a linear non-divergent
barotropic model on an f -plane (f = 5 × 10−5 s−1) are:

∂u′

∂t
+ ū

∂u′

∂x
+ v̄

∂u′

∂y
+ u′ ∂ū

∂x
+ v′ ∂ū

∂y
− v′ = −∂φ′

∂x
,

∂v′

∂t
+ ū

∂v′

∂x
+ v̄

∂v′

∂y
+ u′ ∂v̄

∂x
+ v′ ∂v̄

∂y
+ u′ = −∂φ′

∂y
,

∂

∂x

(
ū

∂u′

∂x
+ v̄

∂u′

∂y
+ u′ ∂ū

∂x
+ v′ ∂ū

∂y

)

+ ∂

∂y

(
ū

∂v′

∂x
+ v̄

∂v′

∂y
+ u′ ∂v̄

∂x
+ v′ ∂v̄

∂y

)
− ζ ′ = −∇2ϕ′,




(3.1)

where u and v are the zonal and meridional wind
components, φ the geopotential height, and ζ the relative
vorticity. Variables with an overbar represent the basic
state and those with a prime are perturbations.

All model variables have been non-dimensionalized
with a characteristic time-scale of T = 1/f = 2 × 104 s
(a non-dimensional time t = 0.18 corresponds to 1 hour)
and characteristic velocity and horizontal length scale
of C = 50 m s−1 and L = CT = 1000 km, respectively.
The numerical technique employed includes a fourth-
order Runge–Kutta time-integration scheme with a time
increment of 0.002 (40 s), a Matsuno advection scheme
(Shen et al., 2003), and a second-order central difference
scheme for space derivatives. The model covers a 4 by
4 (4000 km by 4000 km) domain with a grid resolution
of 0.004 (4 km) in both x and y directions. The lateral
boundary condition is a radiative boundary. All the
simulations are carried out to time 8.64 (48 hours). Most
of the results shown are up to 4.32 (24 hours) during
which wave–mean flow interactions occur.

The three symmetric tangential wind profiles, TC1,
TC2 and TC3 as specified in section 2 (Figure 2(a)),
are investigated. An initial wave-number two asymmetric
perturbation is introduced with the following structure:

ς ′ = A × exp{−0.5 × (10r − 6)2} cos(2λ), (3.2)

where r is the radial distance, λ the azimuthal angle, and
A the amplitude of the perturbations. The maximum of
the perturbation is placed at the radius of 0.6 (600 km) in
the outer region of the TC. A modest initial perturbation,
A = 0.5, is specified. This corresponds to a perturbation
vorticity that is 7.4% of the basic-state maximum vor-
ticity. All model outputs are interpolated to a cylindrical
coordinate system about the vortex centre and they are
decomposed into a symmetric and an asymmetric com-
ponent for further diagnosis.

The temporal evolution of both the asymmetric vor-
ticity amplitude and asymmetric kinetic energy (KE) for
the three experiments are displayed in Figure 4. Although
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Figure 4. The time–radius cross-section of the wave-number two vorticity amplitude (left panels) and the asymmetric kinetic energy (right
panels) in the linear barotropic model experiments for TC1 (top), TC2 (middle) and TC3 (bottom).

the initial perturbation is located at r = 0.6, the max-
imum growth of the asymmetric perturbation in TC1 is
situated at the inner region (near r = 0.3), where the neg-
ative vorticity gradient is the largest (see Figure 2(d),
solid line). The non-dimensional growth rate in the inner
region is 0.3, which corresponds to an e-folding time-
scale of 18 hours. The location of maximum growth and
the growth rate agree well with the eigenvalue analysis
in the previous section. The evolution of the asymmetry
in TC3 is very similar to the one in TC1, except with a
smaller growth. While the asymmetric perturbations con-
tinue to grow in the unstable profiles TC1 and TC3, the
inner asymmetry in the stable TC2 grows initially and
then decays and the outer asymmetry has little change
(Peng et al., 2008).

The cause for the growth of new asymmetry inside
the initially specified asymmetry is due to the interac-
tion between the initial perturbation radial wind and the
basic vorticity gradient, while its subsequent decay under

a stable symmetric wind profile (such as TC2) is due to
vortex axisymmetrization as studied previously by Mont-
gomery and Kallenbach (1997) and Peng et al. (2008). In
a vortex with differential rotation, an up-shear tilting of
the perturbation would lead to an energy transfer from the
symmetric vortex to the asymmetric perturbation, while
a down-shear tilting would lead to an opposite energy
transfer. Figure 5 illustrates the evolution of the asym-
metric vorticity pattern (shaded area) in TC2, plotted in
the radial and azimuthal coordinates for better viewing of
the phase tilt. A phase line is defined by connecting the
inner and outer asymmetric vorticity centres, and a line
parallel to the radial axis has no phase tilt with respect
to the tangential wind shear (note that the angular veloc-
ity decreases monotonically with radius (Figure 2(b))).
Initially, an outer vorticity perturbation is introduced at
r = 0.6. Quickly, an asymmetric perturbation develops
in the inner region with its maximum located at r = 0.3
where the basic vorticity gradient is largest. At t = 0.54,
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Figure 5. The asymmetric vorticity pattern (positive only, shaded) and
the vorticity advection by asymmetric flow (contour) at time (a) 0.0,
(b) 0.54, (c) 1.62, and (d) 3.24 in linear barotropic experiment for
TC2. The thick line represents the phase tilting of the asymmetric
perturbations. An increasing azimuthal angle is downstream for the

basic cyclonic flows.

there is a clear up-shear tilting. The phase line changes
to a down-shear tilting by t = 3.24. The change of the
tilting from up-shear to neutral and then to down-shear
corresponds well to the time tendency of the perturbation
energy (Figure 4(e)).

The time tendency of the asymmetric barotropic vor-
ticity can be written as

∂ζ ′

∂t
= − v̄

r

∂ζ ′

∂λ
− u′ ∂ζ̄

∂r
. (3.3)

Here, u′ is the asymmetric radial wind, v̄ the basic-
state tangential wind, ζ ′ the asymmetric vorticity, and ζ̄

the symmetric vorticity. The first term on the right-hand
side represents the vorticity advection by the symmetric
mean flow. This term does not cause the growth of
the asymmetric vorticity, and instead, only redistributes
the initial asymmetric vorticity that would contribute
to its phase change. The second term on the right-
hand side represents the mean vorticity advection by the
asymmetric radial wind. This term, as shown in Figure 5
(contour line), is responsible for the generation of the
new vorticity perturbation and the initial up-shear tilting
of the total asymmetry. As the inner asymmetry develops,
the vorticity advection by the symmetric angular velocity,
which is faster (slower) in the inner (outer) region, causes
the transition of the asymmetry tilt from up-shear to
neutral and further to down-shear. Detailed discussion on
the phase change for stable profiles is given in Peng et al.
(2008).

The time snapshots of the asymmetry for the unstable
TC1 are depicted in Figure 6. Unlike TC2, the asymmetry
always keeps an up-shear tilt even under basic-state
differential rotation. This implies that the asymmetric
perturbation will always gain energy from the symmetric
mean flow, as shown in Figure 4(d). Note that in TC1,
a positive vorticity gradient exists in the outer region
(which does not exist in TC2) so that u′ associated with
the inner asymmetry can feed back positively to the
outer asymmetry, and the outer asymmetry further feed
into the inner asymmetry. Through this continuous two-
way positive feedback process, both the inner and outer
asymmetric perturbations grow by gaining energy from
the symmetric flow.

Figure 7 shows the evolution of the asymmetric radial
wind and the vorticity advection by the asymmetric flow
(the second term in (3.3)) in both the inner and outer
regions. Consistent with the up-shear tilting pattern (i.e.
the outer perturbation is always located on the down-
stream side of the inner perturbation), the asymmetric
radial wind remains as positive (negative) in the inner
(outer) region all the time (Figure 7(a)). This radial wind
distribution causes positive vorticity tendencies in both
the inner and outer regions (Figure 7(b)), as the basic-
state vorticity gradient is negative in the inner region
and positive in the outer region (Figure 2(d), solid line).
The time changing-rate of the asymmetric vorticity in
the inner region is greater than that in the outer region,
primarily because the amplitude of the inner negative
symmetric vorticity gradient is about 7 times greater than
that of the outer positive vorticity gradient. The total vor-
ticity change is similar to the vorticity advection by the
asymmetric flow (figure not shown).

The diagnosis of the asymmetric vorticity budget
indicates that the maintenance of the up-shear tilting
comes primarily from the second advection term in (3.3).
The inner core asymmetry rotates faster than the outer
asymmetry due to the advection by the symmetric mean
angular velocity (the first term in (3.3)). However, the
advection by the asymmetric radial wind generates a
maximum vorticity tendency downstream in the outer
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Figure 6. Same as Figure 5 except for TC1.

region (Figure 8(a)) and a maximum vorticity tendency
upstream in the inner region (Figure 8(b)). This offsets
the effect of differential rotation by the mean flow (part
of axisymmetrization). As a result, the up-shear tilting
of the asymmetry is kept, which can be clearly seen
from the phase between the inner and outer vorticity
centres (Figure 8(c)), and the asymmetry is able to draw
energy continuously from the basic flow in a linear
sense. It is this positive feedback that leads to the
barotropic instability of the symmetric mean flow in TC1.
The analytic eigenvalue solution for a piecewise-constant
vorticity profile by Schubert et al. (1999) showed how the
inner and outer disturbances located near the two jumps of

their vorticity profile would move in opposite directions,
as shown in our phase and vorticity diagrams.

The overall pattern and evolution of the asymmetric
vorticity and kinetic energy in TC3 are very similar to
those in TC1 except that the growth rates are smaller
(Figure 4). The non-dimensional growth rate for the
wave-number two perturbation in TC3 is 0.16 (corre-
sponding to an e-folding time-scale of 148 hours), which
is consistent with the eigenvalue analysis but signifi-
cantly smaller than that in TC1. The weaker instability
in TC3 is attributed to the larger distance between the
inner region of negative vorticity gradient and the outer
region of positive vorticity gradient. This greater distance
leads to a weaker mutual amplification of the inner and
outer asymmetries through perturbation winds acting on
the basic-state vorticity gradient.

4. Nonlinear barotropic model simulations

While the linear experiments above illustrate how the
instability occurs, they do not allow the change of per-
turbations feeding back to the symmetric vortex. In this
section, we examine how the evolution of asymmetric
perturbation impacts the symmetric vortex in a nonlinear
barotropic model. The governing equations for a nonlin-
ear non-dimensional non-divergent barotropic model on
an f -plane may be written as:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− v = −∂φ

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ u = −∂φ

∂y
,

−2J(u, v) − ζ = −∇2ϕ,




(4.1)

where J(u, v) = ∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
and ζ = ∂v

∂x
− ∂u

∂y
.

The same initial condition as in the linear cases is used.
The diagnostics for the energy exchange is made with the
following symmetric KE equation:

∂K

∂t
= −∂(rūK)

r∂r
− ū

∂(ru′2)
r∂r

− v̄
∂(u′v′)

∂r

+ū
v′2

r
− 2v̄

r
u′v′ − ū

∂φ̄

∂r
, (4.2)

where the first term on the right-hand side of (4.2) is the
flux divergence of K by the symmetric radial flow, the
sum of the second, third, fourth and fifth terms represents
the symmetric KE change by wave–wave interactions,
and the sixth term is the energy conversion from the
symmetric potential energy into the symmetric kinetic
energy. The first and the last terms on the right-hand
side are not related to the energy transfer between the
asymmetry and the symmetry.

Figure 9 shows the evolution of the asymmetric vortic-
ity, the symmetric vorticity gradient, the symmetric kin-
etic energy and the total energy transfer between the sym-
metric and asymmetric flows in TC1. The initial wave-
number two perturbation in the outer region (r = 0.6)
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Figure 7. Evolution of the non-dimensional (a) asymmetric radial wind at the inner (r = 0.3, solid line) and outer (r = 0.6, dashed line) maximum
asymmetric vorticity centres, (b) vorticity advection by the asymmetric flow (−u′∂ζ̄ /∂r) in linear experiment for TC1.

grows until t = 2.16 and weakens slightly afterwards,
while the inner asymmetric perturbation induced by the
outer asymmetry continues to grow until t = 3.24 and
then remains quasi-steady (Figure 9(a)). Compared to the
linear case, the reduced growth rates in both the inner and
outer regions are attributed to the modification of the sym-
metric vorticity gradient (Figure 9(b)), as the increased
distance between the inner negative vorticity gradient
centre and the outer positive vorticity gradient centre
leads to a weaker instability. As the inner asymmetry
grows, the symmetric kinetic energy and tangential wind
near the radius of maximum wind decrease with time
(Figure 9(c)). The symmetric KE change by wave–wave
interactions is given in Figure 9(d). The diagnosis of the
symmetric energy budget shows that the symmetric flows
transfer kinetic energy to the asymmetric perturbations
in the inner core region due to the up-shear tilt of the
asymmetry (figure not shown). Such an energy transfer
becomes weaker as the symmetric positive vorticity gra-
dient centre shifts outwards.

Only the rate of energy transfer is shown for TC2 and
TC3 (Figure 10). The symmetric flows transfer energy
to the asymmetric perturbations before t = 1.62 (when
the up-shear tilt is present), and gain energy from the
asymmetric perturbation afterwards as the asymmetry
changes its phase to a down-shear tilt (Figure 10(a)).
Details of this can be found in Peng et al. (2008). The
time evolution of the energy exchange in TC3 is very
similar to the one in TC1, but weaker in magnitude
(Figure 10(b)).

Figure 11 shows quantitatively to what extent the
symmetric vortex intensity is influenced by the imposed
initial asymmetric perturbation for wind profiles TC1,
TC2 and TC3 after 24 h. For easier comparison, the
maximum tangential wind has been normalized so that
the weakening rate can be readily estimated. It turns out
that the intensity reduction rate in TC1 is about three
times as large as that in TC2, whereas the weakening
rate in TC3 is about twice as large as in TC2.

The amplitude of the initial perturbation in the afore-
mentioned experiments is modest (A = 0.5, a perturba-
tion vorticity that is 7.4% of the basic-state maximum

vorticity). Two additional experiments with A = 1.0 and
A = 1.5 are conducted to examine the sensitivity to
amplitude of the initial perturbations. Figure 12 depicts
the evolution of the maximum tangential wind in the con-
trol and the two new sensitivity experiments. While the
maximum tangential wind decreases by 6% in the con-
trol experiment by 24 hours, a twice (three-times) larger
initial asymmetric perturbation causes the decrease of the
symmetric wind amplitude by 11% (18%) within 18 (12)
hours. Therefore, the stronger the initial asymmetric per-
turbation is, the weaker the unstable symmetric vortex
TC1 becomes. It is interesting to note that the TC1 vortex
has its maximum wind increased after time 2.2 with the
large initial asymmetry (Figure 12, dash-dotted line). In
that case, the vortex is intensified by the much induced
asymmetry near the RMW. However, the overall max-
imum tangential wind decreases with time due to the
unstable growth of the asymmetry in the early stage.

5. Three-dimensional model simulations

We further examine three-dimensional simulations using
the dry dynamics of the Weather Research and Forecast
model (WRF), version 2.2. A horizontal grid spacing of
5 km is applied for a domain of 2000 km by 2000 km. The
model extends to 10 hPa with 28 vertical sigma levels.
The initial thermal profile is a mean tropical sounding, the
same as the one used in Li et al. (2006). Diabatic physics
processes in the model (such as convective and radiation)
are turned off. The model is integrated for 48 hours at a
time step of 15 s. The Coriolis parameter is set to be
a constant f = 5 × 10−5 s−1 at 20◦N, the same as in
the previous barotropic simulations. The upper and lower
boundaries are free slip, and the lateral boundaries are
fixed at their initial values.

The three-dimensional (3D) model was initialized with
the balanced unstable vortex TC1 or stable vortex TC2
at the surface, decreasing to zero at the top model
level (Li et al., 2006). A wave-number two perturbation,
with its maximum located at the radius of 600 km, is
specified initially as in the barotropic simulations. The
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(a)

(b)

(c)

Figure 8. The time–azimuth cross-section of the wave-number two
vorticity (positive only, shaded) and the vorticity tendency associated
with the asymmetric radial wind advection (contour) at (a) r = 0.6 and
(b) r = 0.3. The bottom panel (c) shows the phase relationship between
the inner (r = 0.3, shaded) and outer (r = 0.6, contour) maximum

asymmetric vorticity perturbations in linear experiment for TC1.

maximum wind of the asymmetric perturbation is 10%
of the symmetric mean flow.

Figure 13 shows the evolution of the wave-number two
perturbation at hours 0, 3, 9 and 18 in TC1. Similar to
the 2D simulations, an inner-core asymmetry is generated
by the initial perturbations in the outer region and there
is phase lock between the inner asymmetry and the outer
asymmetry. The interaction between the inner and the
outer asymmetric perturbation causes the perturbations to
continue gaining energy from the symmetric mean flow.
The inner asymmetry grows much faster than the outer
one, in agreement with the barotropic experiments.

For the stable vortex TC2, an inner-core asymmetry is
also triggered by the initial outer asymmetry. It grows

during the first 9 hours and then weakens afterwards (fig-
ure not shown). No unstable development of asymmetric
perturbations is observed in this experiment, as expected.
The time evolution of the normalized maximum symmet-
ric tangential wind in the two experiments is shown in
Figure 14. A larger change of the mean vortex occurs in
the unstable wind profile TC1 that agrees with the non-
linear barotropic model result shown in Figure 11, but
the overall changes of the symmetric winds are smaller
in the 3D simulations.

6. Disturbances at different initial positions

Peng et al. (2008) shows that the impact of an asym-
metric disturbance on a stable vortex through axisym-
metrization depends critically on where the asymmetry
is located initially. So far, we have investigated the
instability with the initial perturbations specified in the
outer region near where the basic-state vorticity gradient
changes sign. What happens if the initial perturbations are
placed at other locations? Two additional linear experi-
ments for the basic vortex TC1 are carried out to answer
this question. Experiment TC1L03 has the initial wave-
number two perturbations located at the radius of 0.3
where the maximum vorticity gradient resides. In exper-
iment TC1L45, the initial asymmetry is placed at radius
0.45, between the radii of maximum vorticity gradient.
The evolution of the asymmetric vorticity amplitude and
asymmetric kinetic energy for these two experiments are
shown in Figure 15. The initial asymmetric perturbation
in experiment TC1L03 propagates slightly outward, while
additional asymmetry is induced inside the initial asym-
metry (Peng et al., 2008). In addition, new asymmetry
grows in the outer region where local vorticity gradi-
ent has its second maximum. As the outer asymmetry
grows, asymmetry near the inner radius of maximum vor-
ticity gradient also grows through the feedback process
as discussed for TC1. In TC1L45, even though the initial
disturbance is placed between the inner and outer local
(absolute) vorticity gradient maxima, the growth of the
asymmetry is still concentrated at the two locations with
large local vorticity gradient and the phase lock keeps the
total asymmetry growing at the expense of the asymmet-
ric part.

Putting all three experiments, TC1, TC1L03 and
TC1L45 (Figures 4(d), 15(b) and 15(d)), into perspec-
tive, it becomes clear that all three have very similar
behaviour, irrespective of the different positions of their
initial asymmetry. As expected, asymmetries grow largest
where the local basic-state vorticity gradient is largest
(in an absolute sense). Because of the change of sign
from one local vorticity gradient maximum to another,
the asymmetries have a phase lock and grow under the
instability.

7. Vortex with a smaller radius

The basic profiles we have examined so far are designed
based on the NOGAPS model analysis, which has a
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(a) (b)
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Figure 9. The time–radius cross-section of (a) the asymmetric vorticity amplitude, (b) the symmetric vorticity gradient, (c) the symmetric kinetic
energy and (d) the rate of energy transfer from the asymmetric to symmetric flows in the nonlinear barotropic simulation for TC1.

Radius Radius

(a) (b)

Figure 10. The time–radius cross-section of the rate of energy transfer from the asymmetric to symmetric flows in the nonlinear barotropic
simulations for (a) TC2 and (b) TC3.

coarse resolution, and the TC profile typically has a
large radius of maximum wind (200–300 km). To ensure
the generality of our results, another unstable tropical
cyclone profile is investigated. TC4 has its maximum
tangential wind 0.5 (dimensional value, 25 m s−1) located
at the radius of 0.1 (100 km). The negative vorticity-
gradient centre is situated at the radius of 0.1 while the
positive vorticity-gradient centre is located at 0.25 (see
Figure 16).

The initial perturbations are also given by (3.2) with
the amplitude A = 0.5 and their maximum centre located
at r = 0.25. Both linear and nonlinear experiments are

carried out, in comparison with the results from the
unstable TC1. The initial perturbations located at r =
0.25 grow slowly till time 2.16, and decay afterwards in
the linear simulation (Figure 17(a)). Meanwhile, the inner
asymmetric perturbations are generated and intensify
quickly to their maximum around time 1.0 and then
weaken. While the asymmetries grow along the radius
of local vorticity gradient extremes as seen in TC1
(Figure 9), the inner asymmetry grows much faster than
the outer asymmetry in TC4 as the basic-state vorticity
gradient near the radius of the maximum wind in TC4
is greater than that in TC1. The asymmetric component
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Time

Figure 11. Evolution of normalized maximum tangential winds in the
nonlinear barotropic simulations for TC1 (solid line), TC2 (dashed line)

and TC3 (dash-dotted line).

Time

Figure 12. Evolution of normalized maximum tangential winds in
nonlinear barotropic experiments for TC1 with the initial perturbation
amplitude A = 0.5 (solid line), A = 1.0 (dashed line) and A = 1.5

(dash-dotted line).

in the nonlinear experiment has similar structure to that
in the corresponding linear experiment (not shown). The
maximum tangential wind of TC4 decreases with time as
the energy is being transferred from the symmetric flows
to the asymmetric perturbations, similar to the intensity
change in TC1 (Figure 17(b)). Overall, the characteristics
of the flow pattern in TC4 are very similar to those
in TC1.

8. Conclusion and discussion

Much effort has been devoted to understanding vortex
instability near the radius of maximum wind. The singular
vector analysis by Peng and Reynolds (2006) indicates
that intensity forecasts of TCs are most sensitive to the
initial state in the outer region of a storm (around the
radius of 500 km) where the vorticity gradient changes
sign. As the wind associated with a storm merges with the
environmental wind, it is not uncommon to find uneven
vorticity gradient distribution along the radial direction

in the outer part of a storm, as observed in the daily
analysis. In this study, we investigate the importance of
the existence of the vorticity gradient sign change in
the outer part of a TC-like vortex. Does this necessary
condition support vortex instability? How does this type
of unstable wind profile affect the development of the
asymmetric perturbation and its interactions with the
symmetric flow? We investigate these problems with
linear and nonlinear barotropic models and a three-
dimensional primitive equation model (WRF).

Three types of TC-like vortices (TC1, TC2 and TC3)
are designed to mimic the observed stable and unstable
wind profiles in the TC outer region, where TC1 and
TC3 are strong and weak unstable vortices and TC2 is a
stable vortex. Comparing to TC1, there is a larger distance
between the inner negative vorticity gradient centre and
the outer positive vorticity gradient centre in TC3.

The eigenvalue analysis reveals that wave-number
two is the most unstable azimuthal mode in TC1 and
TC3, with a non-dimensional growth rate measured
by e-folding time-scales of 26 hours and 215 hours,
respectively. No unstable modes appear in TC2, as
expected.

The linear non-divergent barotropic model is used to
investigate how the instability occurs. In both the unsta-
ble and stable cases, an inner asymmetric perturbation is
induced by the initially specified outer asymmetry impos-
ing on the basic-state vorticity gradient. The newly gen-
erated inner asymmetry feeds back to the growth of the
outer symmetry in the unstable case through the basic-
state vorticity gradient in the outer region. The increase
of the outer asymmetry further enhances the growth of
the inner asymmetry. Because of this mutual interaction,
the vorticity advection by the asymmetric radial wind
speeds up the phase propagation of the outer asymme-
try while slowing down the phase propagation of the
inner asymmetry. This process acts against the down-
shear tendency effect by the differential symmetric mean
flow advection (Montgomery and Kallenbach, 1997; Peng
et al., 2008) and allows the inner and the outer asymme-
tries to maintain an up-shear tilt by locking their phase
line, connected between the inner and outer asymme-
tries. The up-shear tilt of the asymmetric vorticity causes
energy transfer continuously from the symmetric mean
flow to the asymmetric disturbances, thus the instability.
In the stable case, the inner asymmetry cannot amplify
the outer asymmetry because there is no basic-state vor-
ticity gradient with a different sign in the outer part of the
vortex. Therefore the initial up-shear tilt quickly shifts to
a down-shear tilt by the differential basic-state tangen-
tial wind. This leads to the perturbation energy flowing
back to the symmetric mean flow at a later stage, and
the asymmetric perturbation decays. In TC3, there is
a larger distance between the inner negative-vorticity-
gradient centre and the outer positive-vorticity-gradient
centre so that the positive feedback between the inner
and the outer asymmetries is smaller, thus a weaker
instability.

For the same given unstable radial wind profile (TC1),
initial perturbations located at different radial positions
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(a) (b)

(c) (d)

Figure 13. The wave-number two vorticity fields at time (a) 0 h, (b) 3 h, (c) 9 h and (d) 18 h in the WRF model experiment for TC1. The
vorticity unit is 10−5 s−1 and the horizontal scale is 100 km.

Figure 14. The temporal change of the normalized maximum tangential
winds in the WRF model experiments for TC1 (dashed line) and TC2

(solid line).

result in similar growth of the asymmetry and similar
evolution of the symmetry. This is due to the fact that,
irrespective of the position of the initial disturbance,
new asymmetries would always be induced where there
is a basic-state vorticity gradient. When the basic-state
vorticity gradient changes sign somewhere, the inner and
the outer asymmetries can evolve in a lock-in phase tilt
and maintain the instability. It is the profile of the basic-
state vorticity gradient that determines the outcome of

the imposed asymmetry, not its position. This is very
different for a stable profile in which the position of the
initial asymmetry plays a critical role in determining the
outcome (Peng et al., 2008).

The impact of an initially specified asymmetric pertur-
bation on the symmetric vortex is examined in a nonlinear
barotropic model. The growing of the asymmetric per-
turbation weakens the symmetric vorticity gradient and
reduces the barotropic instability gradually. The unstable
growth of the asymmetric perturbation in TC1 can lead to
a significant reduction of the symmetric vortex, depend-
ing on the magnitude of the initial disturbance. The 3D
simulations are similar to the results from the nonlinear
barotropic model.

Previous studies such as Montgomery and Kallenbach
(1997) suggest that axisymmetrization may be an impor-
tant mechanism that will feed energy from asymmetries to
symmetric basic-state and increase the maximum inten-
sity or outer part of the wind for a TC-like vortex (Peng
et al., 2008). The present study suggests that the existence
of instability in the outer part of the wind profile (though
it may be very weak) can cause a significant weakening of
the basic-state vortex. Nolan et al. (2007) suggested that
asymmetric heat sources would lead to eventual weaken-
ing of the symmetric wind in most situations with a stable
profile. Therefore a TC-like vortex may require continu-
ing injection of energy from convection to maintain and
enhance its intensity.
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Figure 15. The time evolution of the asymmetric vorticity amplitude (a), (c) and asymmetric kinetic energy (b), (d) in vortex TC1 with the initial
asymmetric perturbations located at the radius of 0.3 (0.45).

Radius Radius

(a) (b)

(c) (d)

Figure 16. Radial profiles of the idealized vortex for non-dimensional (a) tangential wind, (b) angular velocity, (c) vorticity and (d) vorticity
gradient for TC4.
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(a) (b)

Figure 17. The temporal evolution of the (a) asymmetric vorticity amplitude in the linear experiment for TC4 and (b) symmetric kinetic energy
in the nonlinear experiment for TC4.
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