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ABSTRACT   

A method is presented for mapping sea surface salinity (SSS) fields from Aquarius Level 
2 along-track data in order to improve the utility of the SSS fields at short length (O ~150 
km) and time (O ~1 week) scales. The method is based on optimal interpolation (OI) and 
provides an SSS estimate at a grid point as a weighted sum of nearby satellite 
observations. Weights are optimized to minimize the estimation error variance. As an 
initial demonstration, the method is applied to Aquarius data in the North Atlantic. The 
key element of the method is that it takes into account the so-called long-wavelength 
errors (by analogy with altimeter applications), referred to here as inter-beam and 
ascending/descending biases, that appear to correlate over long distances along the 
satellite tracks. The proposed method also includes filtering of along-track SSS data prior 
to OI and the use of realistic correlation scales of mesoscale SSS anomalies. All three 
features are shown to result in more accurate SSS maps, free from spurious structures. A 
trial OI SSS analysis is produced in the North Atlantic on a uniform grid with 0.25o- 
resolution and temporal resolution of one week, encompassing the period from 
September 2011 through August 2013. A brief statistical description, based on the 
comparison between SSS maps and concurrent in-situ data, is used to demonstrate the 
utility of the OI analysis and the potential of Aquarius SSS products to document salinity 
structure at ~150 km and weekly scales.  
 
 
1. Introduction. 
 
 
Sea surface salinity (SSS) is a key parameter that reflects the intensity of the marine 
hydrological cycle [US CLIVAR Salinity Working Group, 2008]. Aquarius/SAC-D 
satellite observations provide an opportunity to observe near-global SSS with space and 
time resolution not available by other components of the Global Ocean Observing System 
(GOOS).  
 
Aquarius/SAC-D is a collaborative space mission between NASA and Argentina’s space 
agency.  Since its launch in June 2011 and onset of data delivery in late August 2011, the 
Aquarius/SAC-D satellite has been providing space-based observations of SSS with a 
complete global coverage every 7 days. The satellite is positioned on a polar sun-
synchronous orbit crossing the equator at 6 pm (ascending) and 6 am (descending) local 
time. The Aquarius instrument consists of three microwave radiometers that generate 
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three beams at different angles relative to the sea surface. The beams form three elliptical 
footprints on the sea surface (76 x 94 km, 84 x 120 km, and 96 x 156 km) aligned across 
a ~390-km-wide swath. The emission from the sea surface, measured by the radiometers 
as an equivalent brightness temperature in Kelvin, is converted to SSS, subject to 
corrections for various geophysical effects. A detailed description of the Aquarius/SAC-
D satellite mission and the Aquarius instrument can be found in: Le Vine et al. [2007]; 
and Lagerloef et al. [2008]. 

 
Since the availability of Aquarius on-orbit data, the calibration/validation team has been 
actively identifying problems and errors, improving algorithms, and updating the versions 
of available data. With respect to SSS, significant sources of errors are: temporal sensor 
drift; ascending/descending biases; and inter-beam biases [Lagerloef et al., 2013]. The 
latter biases are the focus of the present study. Although there has been steady 
improvement in the Level 2 SSS versions over the past two years, both the 
ascending/descending biases and inter-beam biases continue to have significant space-
time variability globally, and are the primary source of residual calibration errors in 
Aquarius SSS retrievals that manifest themselves as artificial north-south striped patterns 
in mapped SSS fields.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Global maps of inter-beam SSS differences averaged over the month of September 
2012. Upper: SSS of beam #2 (middle beam) minus SSS of beam #1 for ascending (a) and 
descending (b) satellite passes. Lower: SSS of beam #2 minus SSS of beam #3 for ascending (c) 
and descending (d) satellite passes. Units are psu. Areas where the differences are smaller than 
0.2 psu are blanked. The inter-beam SSS differences are computed by differing monthly SSS 
fields constructed by bin-averaging of raw Aquarius data (each beam separately) within 4o x 4o 
bins centered on a global grid with the grid spacing of 2o in both zonal and meridional directions. 
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Figure 1, showing global maps of inter-beam differences averaged over the month of 
September 2012, illustrates the problem. The differences are shown separately for 
ascending (from southeast to northwest) and descending (from northeast to southwest) 
Aquarius passes. In many areas, the inter-beam differences are much larger than 0.2 psu 
and obviously do not represent the true ocean signal. Note the large-scale structure of the 
inter-beam differences and the differences between the ascending and descending 
patterns. The differences also have large amplitude temporal variations with an annual 
cycle (not shown).  
 
The primary objective of this investigation is to test the possibility of correcting errors in 
Aquarius SSS data by incorporating available statistical information about the signal and 
noise into the mapping procedure commonly known as Optimal Interpolation (OI). OI is 
a fairly straightforward but powerful method of data analysis, extensively used by 
oceanographers and meteorologists for estimating values of geophysical variables on a 
regular grid from irregularly sampled observations. The method is based on the Gauss-
Markov theorem [Gandin, 1965; Bretherton et al., 1976; McIntosh, 1990] and determines 
a point-wise estimate of the interpolated field with minimum ensemble mean-square 
error, given prior information about the variances and correlation functions of the 
estimated field and the data. The latter requirement is probably the hardest step in 
practical implementation of the method to the problem of mapping the Aquarius SSS. 
This is partly due to the fact that in many parts of the ocean there are insufficient high-
resolution observations to confidently specify the required statistics of the field [Bingham 
et al., 2002; Lilly and Lagerloef, 2008]. The attractive feature of OI, however, is that it 
affords a very convenient way of taking into account error information specific to a given 
observational platform. This is particularly relevant to the satellite SSS data, since errors 
in the satellite retrievals are of different types and are spatially correlated [Lagerloef et 
al., 2013].  Finally, the OI formalism has successfully been applied for mapping various 
satellite data, such as sea surface temperature [e.g., Reynolds and Smith, 1994; Reynolds 
et al., 2007; Thiebaux et al., 2003] and sea level anomaly [Le Traon et al., 1998; Ducet et 
al., 2000]. Many ideas originally developed for these applications are found to be fruitful 
for the present study as well.  
 
A central goal of the Aquarius satellite mission is to deliver monthly SSS fields at a ~150 
km spatial resolution and an accuracy of 0.2 psu [Lagerloef et al. 2008]. In addition to 
achieving this central goal, we aim to improve the utility (reduce the noise) of the SSS 
fields at shorter length (O ~ 100 km) and time (O ~ 1 week) scales. 
 
In this paper we focus on the North Atlantic between 0-40oN. The choice of this 
particular region is motivated by the ongoing field experiment, “Salinity Processes in the 
Upper-Ocean Regional Study” (SPURS), to study the physical processes that are 
responsible for the maintenance and magnitude of the subtropical Atlantic salinity 
maximum.  The overall region includes substantial space-time variability of SSS as well 
as significantly enhanced near-surface, in-situ salinity observations during SPURS.   
 
The rest of the paper is organized as follows. Section 2 provides an overview of the 
satellite SSS data. Section 3 provides a general description of the algorithm; specifics are 
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given in Section 4. Section 5 presents results that formally validate the use of the long-
wavelength error model to correct Aquarius SSS data for inter-beam biases. An inter-
comparison of SSS analyses is presented in Section 6. Section 7 provides the main 
conclusions and a brief discussion of possible improvements of the analysis.  

 
2. Aquarius SSS data  
 
In the present study, we use Level 2 (L2) version 2.0 Aquarius data produced by the 
NASA Goddard Space Flight Center’s Aquarius Data Processing System (ADPS). The 
L2 data files, distributed by the Physical Oceanography Distributed Active Archive 
Center (PO.DAAC) of the Jet Propulsion Laboratory (JPL), contain retrieved SSS, 
navigation data, ancillary fields, confidence flags, and other related information such as 
surface winds. The data are structured as a sequence of files, each corresponding to one 
orbit of Aquarius. An orbit is defined as starting when the satellite passes the South Pole. 
Individual observations along each orbit consist of a sequence of data points sampled at a 
1.44-second (~10 km) interval. Each individual observation represents the average 
salinity in the upper 1-2 cm layer and over a ~100 km footprint [Le Vine et al., 2007; 
Lagerloef et al., 2008]. The ancillary SSS data are provided from the global 1/12o data-
assimilative Hybrid Coordinate Ocean Model (HYCOM). The model assimilates satellite 
altimeter observations, satellite and in-situ SST as well as vertical temperature/salinity 
profiles from Argo floats and moored buoys. In Aquarius L2 data files, the HYCOM SSS 
is interpolated to the time and location of every Aquarius 1.44-second sample interval.  
 
Figure 2 shows the Aquarius ground tracks over the North Atlantic between the equator 
and 40oN. Each track represents three radiometer beams shown by different colors. The 
Aquarius sampling pattern is quite dense, implying that a variety of commonly used 
interpolation techniques can be applied to construct a spatially mapped product [Lilly and 
Lagerloef, 2008]. The problem, however, lies in the relatively large retrieval errors in the 
satellite SSS data, which, if not corrected, result in spurious structures in the 
corresponding SSS maps.   
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Figure 2. Example pattern of Aquarius ground tracks over the North Atlantic over a 7-day 
period. Colors indicate the three Aquarius beams. Ascending passes are from south-east to north-
west. Heavy lines (green, red and blue) indicate two swaths (ascending and descending) passing 
through the SPURS domain (38oW, 25oN).  
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An example of L2 SSS data is shown in Figure 3, illustrating that there are at least two 
types of errors in the SSS retrievals. A significant source of error is the accuracy of 
individual measurements along the satellite tracks. An important aspect of this error is its 
random character and a very short wavelength. As will be shown later, this short-
wavelength noise is essentially ‘white’ in nature and can effectively be suppressed by 
averaging over a sufficient number of observations (at the expense of spatial resolution) 
or by filtering the data along track such as shown in Figure 3 (heavy lines). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Of much greater concern are differences between the three beams, which can be as large 
as 0.5-0.8 psu and appear to be correlated over large distances along the satellite tracks. 
This type of error is also illustrated by Figure 3. During the satellite pass over the North 
Atlantic on September 14, 2012, the middle beam (red) delivered systematically lower 
SSS as compared to the other two beams. Such inter-beam biases are likely a 
manifestation of residual geophysical corrections. Since the three radiometer beams view 
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Figure 3. Examples of along-track SSS (3 beams, 390-km wide swath): (a) ascending, passing 
through the North Atlantic on September 14, 2012, and (b) descending, passing through the North 
Atlantic on September 11, 2012 (see Figure 2 for locations).  Thin curves – raw data; thick curves 
– smoothed with a running Hanning filter of half-width of ~60 km (approximately half-width of 
the Aquarius footprint). Colors indicate the three Aquarius beams.  
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the ocean surface at slightly different angles, each beam is affected by geophysical errors 
differently [Lagerloef et al., 2013].     
 

 
3. Interpolation procedure 
 
In the interpolation procedure, it is desirable not only to extract all available information 
from the satellite data, but, simultaneously, correct for various errors. The ultimate goal is 
to produce the best possible estimate of the evenly gridded SSS field. The OI analysis 
attempts to accomplish this goal by minimizing the mean square interpolation error for an 
ensemble of analysis realizations. 

 
3.1.General description of algorithm 
 
 
The interpolation expression for OI with N  observations can be written as [Bretherton et 
al., 1976; McIntosh, 1990; Le Traon et al., 1998]:  
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and C  is the joint covariance of the data and the field to be estimated 
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It is generally assumed that the field iS  is imperfectly measured at observation points, 

yielding values with random errors :iε  ii
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reasonable, that the errors and the field are not correlated. Then the general elements of 
the covariance matrixes (2) and (3) can be written as 
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The analysis is determined relative to the “first guess” field, which is assumed to be a 
good approximation of the true state. The estimate and the observations are then equal to 
the “first guess” plus small increments. In this way, the grid point analysis consists of 
interpolation of the first-guess field to the observation points followed by interpolation of 
the differences between the observed and first-guess values back to the grid point 
according to Eq. (1).  
 
The following a priori information is required for construction of a successful OI scheme. 
 A background or first guess field with location-dependent values 0

xS , which may be a 
field of climatological means or continually updated running averages or forecasts 
[e.g., Clancy et al., 1990; Reynolds and Smith, 1994]. 

 Covariance of the field to be analyzed. In practice, it is often expressed in a simple 
analytical form with a few degrees of freedom, allowing for a practical estimation of 
parameters from observations.    

 Covariance of the measurement noise, which can be estimated from an ensemble of 
realizations of the data, in particular, from a long time-series of the data.     

 
Specific choices of parameters used to construct gridded SSS fields from Aquarius L2 
data in the North Atlantic are addresses in the following section. 
 
 
3.2. Specifics  

 
3.2.1. Preparation of input data. 

 
In order to produce the gridded product, the L2 SSS data are first checked for quality. 
Data points contaminated by land (land fraction>0.005) are excluded from the analysis. 
Also excluded from the analysis are data points that are flagged as severely contaminated 
by radio-frequency interference (RFI), and/or sampled during high wind (wind speed > 
15 m/s).  
 
The next step consists of smoothing the along-track SSS data (each beam separately) with 
a running Hanning filter of half-width of about 60 km to suppress high-frequency 
instrument noise (e.g. Figure 3). With the Aquarius ~10-km along-track sampling, the 
filter weighs 12 adjacent observations, which has been found to be quite sufficient to 
significantly reduce the noise level, yet preserve the ocean signal from over-smoothing.  
 
The effect of filtering of the along-track data is demonstrated in Figure 4, which displays 
the mean wavenumber spectra of SSS representing the unfiltered and filtered data from 
the Aquarius repeat track passing through the North Atlantic (see Figure 2 for location). 
The spectrum of the unfiltered data (blue line) is characterized by a pronounced transition 
from ‘red’ to ‘white’ shape at the wavelength near 100 km. The white spectrum at 
wavelengths shorter than 100 km is primarily due to the instrument noise. At wavelengths 
longer than 100 km, the oceanic signal starts to emerge and the power level rises toward 
the longest wavelength resolved by the spectral analysis. Integrating power of the white 
noise over the wavenumber domain yields a root-mean-square error of ~0.21 psu. The 
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signal-to-noise ratio, defined as the ratio of the low-wavenumber signal variance to the 
high-wavenumber noise variance, is about 40 at 1000-km wavelength and only 10 at 500-
km wavelength. After applying the filter procedure (red line) most of the short-
wavelength noise is eliminated, while leaving the ocean signal practically unchanged. 
(This can be shown, for example, by subtracting a flat variance of white noise (0.00025 
psu2) from the blue curve; the result is the green curve). It is likely, however, that residual 
noise effects are still present in the filtered data, particularly in the form of long-
wavelength errors, which are treated separately. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.2. First guess 

 
The first guess fields, from which deviations are computed by the OI analysis, are derived 
from monthly mean SSS fields obtained with variational interpolation of Argo buoy 
measurements. The Argo product is developed at the Asia-Pacific Data-Research Center 
(APDRC), which provides salinity maps on standard depth levels on a monthly basis 
(http://apdrc.soest.hawaii.edu/projects/argo/). Figure 5 shows an example of the Argo-
derived monthly mean SSS field in the North Atlantic.  
 
The advantage of using Argo-derived SSS fields as the first-guess is two-fold. First, 
Argo-derived SSS fields are independent of the analysis of the satellite data. Therefore, 
the data increments, defined as the difference between the data and the first guess, are 
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Figure 4. Mean along-track wavenumber spectra of SSS in the area between 10o and 40oN 
computed from the data of the ascending portion of the Aquarius repeat swath that passes through 
the SPURS domain (see Figure 2 for location). The spectra are computed from 73 Aquarius 
passes (September 2011-April 2013) and the three beams are averaged together. The blue and red 
curves represent, respectively, the unfiltered and filtered data as described in the text. The total 
variance associated with the blue and red curves is 0.396 psu2 and 0.352 psu2, respectively. The 
green curve is obtained by subtracting a flat variance of white noise (0.00025 psu2; black dashed 
line) from the blue curve. 
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also independent of the analysis and can be used to compute the error statistics required 
by OI [Reynolds and Smith, 1994]. Second, Argo-derived SSS fields, since they are 
based on concurrent data, provide unbiased estimates of the first guess as compared to, 
say, climatological fields, which can be biased at large-scales due to the presence of 
significant trends related to climate change [e.g. Durack and Wijffels, 2010] and/or their 
reliance on highly inhomogeneous multi-type-instrument historical data [Gouretsky and 
Koltermann, 2007; Wijffels et al., 2008; Roemmich and Gilson, 2009].    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.3. Signal statistics 

 
The OI analysis is determined in terms of data increments relative to a first guess. 
Therefore, the signal statistics, required by OI, must be derived for the data increments 
relative to the specified first guess [Reynolds and Smith, 1994]. However, the Aquarius 
along-track data are contaminated by long-wavelength correlated error which may result 
in correlation functions dominated by these errors. To overcome this problem, the spatial 
correlation structure of mesoscale SSS anomalies is derived from Aquarius data by 
dividing the along-track observations into shorter 10o-latitude segments. The basic 
assumption here is that the dominant wavelengths of the correlated errors are long 
enough (half-wavelength > 10o in latitude, Figure 1)) such that the effect of these errors 
can significantly be reduced by removing liner trends fitted to the along-track SSS data.  
 
The spatial correlation scales of SSS anomalies were computed from Aquarius data as 
follows. The L2 SSS data (low-pass filtered as described in Sec. 3.2.1) were split into 4 
sub-regions, each spanning 10o in latitude: 0-10oN; 10-20oN; 20-30oN; and 30-40oN. The 
first guess values of SSS were subtracted from the data to obtain the data increments. 
Here, the first guess values of SSS at observation locations at any given time were 
obtained by space-time interpolation of the Argo-derived monthly mean SSS fields (Sec. 
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3.2.2). To estimate autocorrelation functions of SSS, linear trends were first removed for 
each 10o ground-track segment to produce SSS anomalies, presumably free from long-
wavelength errors. The along-track autocorrelation functions of SSS anomalies were then 
estimated for the fractions of ascending and descending paths that span individual 10o 
sub-regions, assuming that the correlation between two points on a given track is a 
function only of a distance between the points. Finally, the ensemble mean 
autocorrelation functions in each sub-region were estimated by averaging over all the 
corresponding individual autocorrelations.  
 
Figure 6 illustrates the procedure described above. Displayed are ensemble-mean 
autocorrelations of SSS for the repeat swath shown by the heavy lines in Figure 2. Each 
color in Figure 6 represents a group of ground-track segments within a particular latitude 
band. For comparison, autocorrelation functions of ancillary SSS are shown by dashed 
lines. (The model-derived, L2 ancillary data [Lagerloef et al. 2013] were processed in 
exactly the same way as Aquarius data (including along-track filtering) except for 
replacing the first guess by the time-mean over the period of Aquarius observations.) The 
space-lagged correlations computed from the Aquarius along-track data agree well with 
the correlations computed from ancillary SSS, providing additional confidence in our 
approach. Note that ancillary SSS, since it comes from a HYCOM model solution, is free 
from ‘measurement’ errors, including long-wavelength errors.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 indicates that the structure of the correlation functions is very similar in all 
latitude bands. The spatial (meridional) scales of mesoscale SSS variability, determined 
here as the lag of the first zero crossing of the corresponding correlation function, vary 
little with latitude.  They are ~180 km in the zonal band 0-10oN and ~150 km in the zonal 
band 30-40oN. Because the differences are relatively small, it is reasonable to model SSS 
variability with a constant spatial decorrelation scale, independent of latitude (see, also, 

0   200 400 600 800 1000 1200
−0.5

0

0.5

1

Spatial lag, km

C
or

re
la

tio
n 

co
ef

fic
ie

nt

 0°−10°N
10°−20°N
20°−30°N
30°−40°N

(a) 

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

Wavenumber, km−1

~k−2

(b) 

Figure 6. (a) Autocorrelation functions for SSS (solid lines) from the data of the ascending 
portion of the Aquarius repeat swath that passes through the SPURS domain (see Figure 2 for 
location). Correlation functions computed from ancillary SSS data are shown by the dashed lines. 
Different colors correspond to different latitude bands (see text for details). The ensemble-mean 
approximation by the Gaussian curve is shown by the green line. The corresponding wavenumber 
spectra (normalized) are shown in (b). 
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Table 1). To approximate the observed correlation array, we choose to use a simple 
Gaussian curve given by   
 
                                                  )/exp()( 22 Rrrc −= ,                                            (6) 
 
where r is the spatial lag, and R =90 km is the e - folding decay scale.  
 
The Gaussian function with the e -folding scale R =90 km (green curve in Figure 6a) was 
found to best represent the shape of the ensemble-mean autocorrelation function over the 
distance range 0-180 km. The corresponding wavenumber spectra are displayed in Figure 
6b. In the wavelength range from about 60 km to 300 km, the empirical spectrum follows 
a power law of the form ~ 2−k , where k  is the wavenumber.  Note that the Gaussian-
shape autocorrelation function has the decay rate for k  that matches that of the observed 
spectra.  
 
The apparent shortcoming of the Gaussian function, which we select as a statistical model 
for interpolation of Aquarius SSS, is that it fails to accommodate the negative 
(oscillatory) lobe of the sample correlation array. Although it is possible, in principle, to 
utilize a more sophisticated analytical function to fit the estimations, the simpler 
Gaussian model has been selected for the following reasons. First, one of the strict 
requirements on the choice of a possible analytical form of the correlation function in the 
OI analysis is that such a function must be positive definite; that is, the eigenvalues of 
each resulting correlation matrix must be nonnegative  [Gandin, 1965; Bretherton et al., 
1976; Thiebaux and Pedder, 1987; Weber and Talkner, 1993]. This is difficult to test for 
an arbitrary correlation model in two dimensions [Buell, 1972; Weber and Talkner, 
1993]. Our experiments with the empirical correlation functions, shown in Figure 6, 
reveal that their direct use in Eq. (1) may sometimes result in instability of the solution. 
This is because not all eigenvalues of the corresponding correlation matrixes appear to be 
positive, which is a necessary condition for a correlation function to correspond to a 
stationary and homogeneous stochastic process [Yaglom, 1986; Gandin, 1965], assumed 
in our study. In this regard, the correlation model given by the Gaussian function is 
proven to be positive definite on every Euclidian space and on the sphere [Yaglom, 1986; 
Weber and Talkner, 1993], which warrants stability of the algorithm. This choice may not 
be truly optimal, nonetheless suitable since the decorrelation scales and the major 
structure of the observed correlations are well reproduced by the Gaussian model (see, 
also, Appendix). Second, interpolation with the Gaussian function can be considered as a 
general form of a low pass filter acting on the data [McIntosh, 1990; Sokolov and 
Rintoul, 1999]. Consideration of the assumptions used to compute correlations from the 
along-track satellite data suggests that such a low-pass filtration would be more 
preferable than the case of a band-pass filter, which would correspond to the oscillatory 
correlation model [Sokolov and Rintoul, 1999]. More sophisticated functional forms 
could be utilized when more precise data on the SSS correlation structure become 
available.  
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The analysis of along-track data gives some useful information about the characteristic 
meridional scales of SSS variability, but tells us virtually nothing about the zonal scales. 
One way to overcome this problem is to assume that the spatial correlations are isotropic. 
This might be true in some areas, but unlikely, for example, in the tropical region where 
both atmospheric forcing and ocean dynamics are strongly anisotropic [Delcroix et al., 
2005; Reverdin et al., 2007]. Yet, limited information exists on the characteristic time 
and space scales of SSS variability in the ocean [Delcroix et al., 2005; Reverdin et al., 
2007]. Studying seasonal variability of SSS in the North Atlantic, Reverdin et al. [2007] 
find that in most regions outside of the equatorial belt the zonal and meridional scales are 
comparable, while near the equator the zonal scales are ~1.5-2 times larger than the 
meridional scales.   
 
To add to the realism of our OI analysis, we also assume that in the tropical region (0-
15oN) the zonal scales are larger than the meridional scales and modify Eq. (6) to take an 
anisotropic form   
 
                                         )//exp(),( 2222

yyxxyx RrRrrrc −−= ,                             (7) 
 
where  xr  and yr  are spatial lags in the zonal and meridional directions, respectively, and  

xR  and yR  are the associated zonal and meridional decorrelation scales. The meridional 

scale is set as yR =90 km (the same as in the subtropical region), while the zonal scale 

varies from xR =180 km at the equator to xR =90 km at 15oN as follows  
 
                                     )324/exp(180)( 2yyRx −= ,   0o ≤≤ y 15oN,                  (8)     
 
where y  is latitude (in degrees). Near the equator, the aspect ratio yx RR /  equals 2 
(following Reverdin et al. [2007]) and gradually decreases toward higher latitudes. At 
latitude 15oN, the correlation function (7) becomes isotropic ( == yx RR 90 km) and 
matches the correlation function given by (6). We note, however, that our assumptions of 
the zonal decorrelation scales are somewhat arbitrary due to the lack of appropriate high-
resolution SSS data. (It has been determined a posteriori that the use of the anisotropic 
correlation in the tropics results in slight improvement of the OI SSS analysis).   
 
3.2.4. Error statistics 

 
Analysis of Aquarius along track SSS data (e.g., Figure 3) reveals that there are long-
wavelength errors (inter-beam biases) that are correlated over long distances along the 
satellite tracks. These errors can be as large as 0.5-0.8 psu and manifest themselves as 
north–south striped patterns in SSS maps constructed by conventional analyses. To 
incorporate statistical information on these errors into our OI scheme, we adopt the idea 
that has originally been developed for altimeter applications [e.g., Blanc et al., 1995; Le 
Traon et al. 1998] and introduce the error covariance model for the Aquarius data in the 
form     
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  22
Lwijji σσδεε +>=<   -if data points ji,  are on the same track and 

beam, and in the same cycle, and 
  2

wijji σδεε >=<             -otherwise,  

where ijδ  is the Kronecker delta, 2
wσ  is the variance of the uncorrelated (white) noise, 

and 2
Lσ  is the variance of the long-wavelength (along-track) error.  

 
Thus, the algorithm allows two types of random errors to contribute to the elements of the 
error covariance matrix: the white noise (diagonal elements), representing uncorrelated 
errors, and the long-wavelength error (off-diagonal elements), representing inter-beam 
biases that correlate over long distances along the satellite tracks. Each beam is modeled 
as having independent errors. 
 
Taking into account prior filtering of the along-track SSS, the variance of the white noise 
in the input data is assumed to be 10% of the signal variance, independent of the 
geographical location. It is thus assumed that uncorrelated errors, although relatively 
small, are still present in the data, allowing for some additional smoothing during the OI 
procedure.  
 
The long-wavelength error in Aquarius observations of SSS is difficult to assess in a 
direct way due to the lack of a proper reference or “ground truth”. To infer the statistical 
structure of the correlated portion of the retrieval error in Aquarius data, we compare 
statistics of the inter-beam differences as seen by HYCOM (ancillary SSS) and those 
evaluated from Aquarius data. In this way, we diminish the effects of large-scale biases 
that may simultaneously be present in both the Aquarius and HYCOM data.    
 
The statistics of the inter-beam differences are evaluated using Aquarius ground-track 
segments that span the entire domain from 0o to 40oN. To eliminate contributions from 
mesoscale SSS anomalies (Figure 6), the along-track SSS data are low-pass filtered with 
a running Hanning filter of half-width of ~600 km. The inter-beam differences are 
computed for each ground-track as SSS of the middle beam (red lines in Figure 2) minus 
SSS of the two other beams (green and blue lines in Figure 2). The covariances of the 
inter-beam differences are computed as a function of along-track separation and then 
averaged over all tracks to obtain the ensemble statistics. The ancillary SSS data are 
processed in exactly the same way. The estimation of the long-wavelength error statistics 
is accomplished by comparing the covariances of the inter-beam differences for Aquarius 
and ancillary SSS. 
 
Figure 7a shows covariances of the inter-beam differences as a function of along-track 
separation distance for Aquarius (red) and HYCOM (blue) SSS. Notice that the variance 
of the Aquarius SSS inter-beam differences is consistently larger than its HYCOM 
counterpart at all lags, presumably due to correlated errors in Aquarius SSS retrievals.  
Assuming that the inter-beam differences in Aquarius and HYCOM data are not 
correlated, we can estimate the statistical structure of the long-wavelength retrieval error 
in Aquarius SSS data as the difference between the Aquarius and HYCOM inter-beam 
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difference covariances (black). The corresponding variance spectrum is shown in Figure 
7b (black).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both the covariance function and the spectrum of the long-wavelength error demonstrate 
that this error has a complex spatial structure. The spectrum is red with more energy 
concentrated at longer wavelengths with no significant peaks. To obtain a functional form 
for the long-wavelength error correlation to use in the OI algorithm, we utilize a simple 
analytical model given by the exponential function of the form  
 
                                                          )/exp()( 2

LLL RllC −= σ ,                             (9)   
 
where l  is the along-track separation distance and =LR 500 km is the exponential decay 
scale. The estimate of LR  is obtained by fitting the curve (9) to the inter-beam bias 
statistics as shown in Figure 7 by the green curve.  
 
The model (9) is chosen to represent the error correlation structure because this is the 
simplest model consistent with the data. It provides a good fit to the error correlation 
array over the distance range 0-600 km over which the correlation is significant, and it 
satisfies the functional requirements of OI [Webber and Talkner, 1993]  

 
 The variance of the long-wavelength error is assumed to be independent of the 
geographical location ( ≈2

Lσ 0.085 psu2; Figure 7a, black curve at zero spatial lag). 
However, the ratio of the error variance to the signal variance is allowed to vary with 
latitude, following the associated changes in the signal variance (Table 1). These 
variations are modeled as follows 
 
                                   3.043.1/))225/exp(1( 2 +−−= yη ,                                    (10)   
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Figure 7. (a) Auto-covariances of inter-beam differences computed from the data of the North 
Atlantic (0-40oN). Red and blue curves represent Aquarius and ancillary SSS, respectively. The 
black curve is the difference between the two, representing the covariance of the long-wavelength 
error in Aquarius data.  Its approximation by the exponential function is shown by the green 
dashed curve. The associated spectra are shown in (b).  
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Where η  is the long-wavelength error variance to signal variance ratio. Thus, the relative 
long-wavelength error variance varies from 30% in the near-equatorial region, where the 
signal variance is large, to 100% at mid-latitudes, where the signal variance is relatively 
low (Table 1). 
   
3.2.5. Implementation 

 
The OI SSS analysis is computed weekly on a 0.25o longitude by 0.25o latitude grid in the 
North Atlantic between 0o-40oN, covering the period from September 2011 through April 
2013. The weeks are defined to correspond to the standard Level 3 product produced by 
ADPS. The OI SSS analysis is run in a local approximation; namely, only data points in a 
smaller sub-domain around the analysis grid point are used. The radius of the sub-domain 
is set to 600 km to accommodate the long-wavelength correlation structure (Figure 6a). 
This approach seems to be reasonable.  Data points beyond this radius contribute very 
little to the grid-point analysis since the decay length scales for both the signal and error 
are shorter than 600 km. The local approximation also helps to reduce effects of spatial 
inhomogeneity in the signal and error statistics [Weber and Talkner, 1993]. Finally, 
taking into account prior filtering of along track SSS data and to reduce computational 
load, only one data point out of three (for each track/beam) is retained.   
 
4. Mapping results 
 
The following examples demonstrate the utility of the OI algorithm described above. 
 
Figure 8 compares SSS maps in the North Atlantic for the week August 26 – September 
1, 2012 produced by three different analyses, including: (1) standard 7-day Level-3 
analysis currently produced by ADPS, (2) conventional OI analysis, hereafter COI, that 
does not take into account the long-wavelength error ( 02 =Lσ ), and (3) the advanced OI 
scheme, hereafter AOI, that takes into account the long-wavelength error as discussed in 
Section 3.2.4. The standard 7-day Level-3 product is constructed by bin-averaging of 
Aquarius L2 SSS data within 1o-longitude x 1o-latitude spatial bins centered on a regular 
1o-resolution grid. The two OI analyses differ only in the way they treat the long-
wavelength error; all other parameters are kept the same.  
 
The bin-average procedure in the standard Level-3 product effectively eliminates high-
frequency (white) instrument noise. Yet, it fails to correct for correlated errors (inter-
beam biases) which manifest themselves as characteristic north-south striped patterns 
aligned with the satellite tracks. These stripes are particularly visible when only 
ascending (Figure 8a) or descending (Figure 8d) data are used as input data to construct 
the corresponding SSS maps, but also noticeable in the combined data (Figure 8g). The 
same is true for the COI analysis. While resulting in better spatial resolution, the COI 
analysis leaves the long-wavelength error untreated such that the satellite tracks appear 
even more visible in the corresponding SSS maps (Figures 8b, 8e, and 8h). In contrast, 
the AOI scheme effectively eliminates the along-track correlated errors. The resulting 
SSS maps constructed from either ascending (Figure 8c) or descending (Figure 8f) data 
are nearly identical and both resemble the true ocean, free from spurious structures.  The 
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impact of taking into account the long-wavelength error in the OI analysis is further 
illustrated by comparing the differences between the ascending and descending products 
(Figures 8 j-l). In the AOI analysis, these differences are significantly reduced.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Weekly SSS fields from Aquarius for the week August 27 – September 2, 2012 
constructed using different algorithms. Left column: bin-averaging of raw Aquarius L2 SSS data 
within 1o-longitude x 1o-latitude bins centered on a regular 1o-grid (standard 7-day Level-3 
product produced by NASA Goddard; gaps in the maps are filled with linear interpolation. 
Middle column: conventional OI analysis (COI) that does not take into account the long-

wavelength errors ( 2
Lσ =0). Right column: advanced OI scheme (AOI) that takes into account the 

long-wavelength error. Upper row (a, b, c) – ascending data; second row (d, e, f) – descending 
data; third row (g, h, i) – ascending and descending combined; bottom row (j, k, l) – ascending (a, 
b, c) minus descending (d, e, f), respectively. 
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 The resolution capabilities as well as limitations of the AOI SSS analysis can be inferred 
from Figure 9, which compares SSS map for the week September 9-15, 2012 with TSG 
salinity measurements taken from 3-m depth by R/V Thalassa. The in-situ measurements 
along the ship track reveal numerous small-scale structures with spatial scales smaller 
than the ~100-km Aquarius footprint. Not surprising, this structures are not resolved in 
the satellite-derived SSS map. At the same time, it is evident that the analysis is capable 
of capturing features at scales of at least 150 km. An example is the tongue of low SSS at 
~32-33oN followed by the tongue of high SSS to the north (Figure 9b). Unlike the TSG 
line, the SSS map from Aquarius provides a detailed two-dimensional view on the spatial 
structure of SSS variability in the region.  
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Figure 9. (a) Aquarius OI SSS [psu] for the week September 9-15, 2012. Dots show locations of 
Argo profiling floats surfaced during the same week. The black line shows locations of TSG 
measurements taken by R/V Thalassa. (b) The same as in (a) but zoomed in the region 42-22oW, 
26-36oN. Note that the color scales in (a) and (b) are different. (c) Comparison of OI SSS map 
with TSG salinity measurements.  The RMSD = 0.12 psu. 
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The high spatial resolution of weekly OI SSS analyses is further illustrated by Figure 10, 
which shows example maps of AOI SSS in the tropical North Atlantic for three weeks in 
July, September, and October 2012. Among the many features represented in Figure 10 is 
the plume of low salinity water that extends far offshore off the coast of South America. 
The plume is associated with the Amazon River outflow and is present seasonally during 
summer and fall and weakens or disappears in other months [Muller-Karger et al., 1988; 
Lentz, 1995; Ffield, 2006]. The Aquarius SSS maps show a very detailed structure of the 
plume [Lagerloef, 2012]. Figure 10a shows how the plume starts to spread eastward into 
the North Atlantic in July 2012, presumably in the retroflection of the North Brazil 
Current [Muller-Karger et al., 1988; Lentz, 1995]. Over time, as the plume extends 
farther eastward, it becomes less continuous. However, the boundaries of the plume 
remain well defined and are characterized by strong SSS gradients.   
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Figure 10. Aquarius OI SSS in the tropical North Atlantic for (a) July 29 – August 4, 2012; (b) 
September 9-15, 2012; and (c) October 21-27, 2012. Black dots show locations of Argo buoy 
measurements for the corresponding week. 
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Finally, to characterize SSS variability in the North Atlantic in one concise picture, 
Figure 11 shows a time-latitude plot of SSS along the meridional section passing through 
the SPURS domain.  The section coincides with the Aquarius track passing through the 
SPURS domain (heavy red line in Figure 2). SSS values along the section are obtained by 
linear interpolation of weekly AOI SSS maps. The analysis demonstrates a consistent 
pattern of seasonal variability which is most pronounced in the tropical region. A narrow 
belt of low SSS, presumably associated with the inter-tropical convergence zone (ITCZ), 
migrates from the southernmost position near the equator in early spring to the 
northernmost position at about 8oN in winter. This structure also exhibits rapid temporal 
changes in some cases and is characterized by strong spatial gradients (see, also, Figure 
10). The weakest seasonal variability is observed in the subtropics, particularly in the 
area of the subtropical salinity maximum. The location of the salinity maximum slightly 
changes during the course of the year from ~26oN in fall-winter, when SSS also reaches 
its maximum,  to ~24oN in late spring, generally consistent with the analysis of historical 
data (A. Gordon, 2013, personal communication).    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Verification statistics and inter-comparison of SSS analyses  
 
Argo buoy salinity measurements in the near-surface layer are used to provide OI error 
statistics during the period from September 2011 through August 2013. The error 
statistics are calculated by comparing buoy measurements for a given week with SSS 
values at the same locations obtained by interpolating the corresponding Aquarius OI 
SSS maps. To quantify specifically the effect of incorporating error statistics into the OI 
algorithm, two versions of the OI analysis are run: one takes into account statistical 
information on along-track correlated errors (AOI) and the other is the conventional OI 
algorithm (COI). Also, in order to answer the question whether or not the OI analysis 

Figure 11. Time-latitude plot of AOI SSS along the meridional section passing through the 
SPURS domain (the location of section is shown by the heavy red line in Fig. 1). Units are psu. 
The white dashed line approximates the location of the subtropical SSS maximum. The black 
dashed line approximates the seasonal march of the Inter-Tropical Convergence Zone (ITCZ).  
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significantly improves the accuracy of Aquarius-derived SSS maps, the analysis-to-buoy 
comparisons are made for the standard Level 3 SSS product currently produced by the 
Goddard Space Flight Center.  
 
The number of buoy data per each week in the North Atlantic is around 80 with quasi-
random geographical distribution (e.g., Figure 9a) and remains around this number during 
the course of Aquarius measurements. The only exception is fall 2012 when a large 
number of Argo floats were deployed in the SPURS domain.  The buoy data are typically 
drawn at 4-5 m depth and in most cases provide quite accurate representation of SSS. 
Under certain meteorological conditions, however, the difference between salinity at 5 m 
depth and the sea surface can be significant and exceed 0.1 psu [Henocq et al., 2010; 
Melnichenko et al., 2010; Lagerloef et al., 2013].   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. (a) Weekly mean differences and (b) root-mean-square differences between Argo 
buoy data in the North Atlantic (0-40oN) and three Aquarius SSS analyses: AOI (red), COI 
(blue); and Level 3 SSS product produced by NASA Goddard (green).  The error statistics are 
computed by comparing Argo buoy measurements for a given week with SSS values at the same 
locations obtained by interpolation of the corresponding SSS maps.  
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Figure 12 compares different SSS analyses using common statistics. The mean average of 
the differences between each product and buoy data over all buoy locations, shown in 
Figure 12a, is a measure of bias. A negative number in this case implies that on average 
the SSS estimate from Aquarius data is fresher than the Argo buoy data, and vise versa. 
The weekly time series of the root-mean-square differences (RMSD) between each of the 
analyses and buoy data are shown in Figure 12b. Table 2 summarizes the mean, standard 
deviation, and RMSD of the differences between the analyses and buoy data for the 104-
week period of comparison.  
 
Several conclusions can be made from Figure 12 and Table 2. First, the average biases 
for the three analyses are all smaller than 0.03 psu. However, the weekly time series of 
the biases (Figure 12a) reveal that there are periods, such as in the fall of 2011, when the 
biases are significant. For example, the COI analysis and the standard Level 3 product are 
both ~0.08 psu fresher than the buoy data in October 2011 and ~0.1 psu saltier than the 
buoy data in January 2012. The AOI analysis results in much smaller biases, but does not 
completely eliminate them. All three analyses exhibit periods of both negative and 
positive biases that tend to cancel each other over the 104-week period of comparison. In 
general, the standard deviation of the weekly biases is the smallest for the AOI analysis 
as compared to the other two analyses (Table 2).  
 
The RMSD differ significantly for the three analyses. On average, the RMSD of the AOI 
analysis is about 35% less than that of the COI analysis and about 40% less than that of 
the standard Level 3 product (Table 2). Figure 12b demonstrates that the AOI analysis 
has the lowest RMSD with respect to the buoy data for nearly all weeks. In all three 
analyses, the buoy-to-analysis comparison has the worst RMSD in spring and summer. 
This is likely a reflection of the fact that very shallow mixed layers are often formed in 
spring and summer so that salinity at 4-5 m depth measured by a typical Argo buoy may 
differ from that at the sea surface. A detailed comparison (not shown here) indicates that 
multiple spikes in the RMSD time series, particularly in the standard Level 3 product, are 
caused by a few buoys located in the tropics. The fact that the spikes are observed in 
spring and summer suggests that these spikes are likely due to misrepresentation of SSS 
by the Argo buoy measurements, as discussed above.  It is also important to note that the 
RMSD of the AOI analysis is smaller than 0.2 for nearly all weeks during the winter 
season when, due to surface cooling and usually stronger winds, mixing penetrates to 
greater depths; thus, buoy measurements at 4-5 m depth provide more accurate 
representation of SSS.  
 
The utility of the AOI product is further illustrated by Figure 13, which compares 
histograms of the differences between the buoy data in the North Atlantic (0-40oN) and 
the three SSS analyses.  The AOI estimates have an overall good agreement with the 
buoy data such that the histogram of the differences is quite narrow, with ~55% of the 
differences falling into the range [-0.1, 0.1] psu. For comparison, this number is 36% for 
the COI analysis and about 34% for the standard Level 3 product. The number of outliers, 
defined here as the differences larger than 0.5 psu, is about 3% in the AOI analysis, 5% in 
the COI analysis, and 6% in the standard Level 3 product. One should keep in mind, 
however, that the relatively poor performance of the standard Level 3 product with 



 22

−1.5 −1 −0.5 0 0.5 1 1.5
0

1000

2000

3000

N
um

be
r 

of
 c

om
pa

ris
on

s

Difference, psu

(a)
STD=0.20

med=0.01

−1.5 −1 −0.5 0 0.5 1 1.5
Difference, psu

(b) med=0.03

STD=0.27

−1.5 −1 −0.5 0 0.5 1 1.5
Difference, psu

(c) med=0.03

STD=0.28

33 34 35 36 37 38
33

34

35

36

37

38

in
−

si
tu

 s
al

in
ity

, p
su

Aquarius salinity, psu

(a)

33 34 35 36 37 38
Aquarius salinity, psu

(b)

33 34 35 36 37 38
Aquarius salinity, psu

(c)

20 60 100 140 20 60 100 140 20 60 100 140

respect to the buoy data is partly due to the coarser grid on which the product is 
constructed.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, Figure 14 shows the scatter plots between the Aquarius SSS (mapped by the 
three analyses) and Argo buoy data, which clearly demonstrates where most of the close 
agreement between the AOI SSS analysis and in-situ data is achieved. The scatter of 
points is considerably reduced over the regions where SSS is higher than ~35.5 psu 
(yellow-to-red colors in Figure 5), but remains significant over fresher areas, generally in 
the tropics (blue-to-magenta colors in Figure 5).  There are a few possible explanations 
for this effect. First, the tropics are characterized by vigorous variability at different space 

Figure 13. Statistics of the differences between Argo buoy data in the North Atlantic (0-40oN) 
and three Aquarius SSS analyses: (a) AOI; (b) COI; and (c) Level 3 SSS product produced by 
NASA Goddard.  The error statistics are computed by comparing Argo buoy measurements for a 
given week with SSS values at the same locations obtained by interpolation of the corresponding 
Aquarius SSS maps.  

Figure 14. Scatter plots of Aquarius weekly SSS analyses and collocated Argo buoy data in the 
North Atlantic (0-40oN). The Aquarius SSS analyses are: (a) AOI; (b) COI; and (c) Level 3 SSS 
product produced by NASA Goddard.  Colors represent the number of points in 0.1-psu bins. The 
error statistics are computed by comparing Argo buoy measurements for a given week with SSS 
values at the same locations obtained by interpolation of the corresponding Aquarius SSS maps.  
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and time scales (Figure 11), including small-scale variability. In the presence of strong 
spatial gradients (e.g., Figure 10), the difference between a point measurement by a buoy 
and the area-averaged SSS sampled by Aquarius can exceed 0.2 psu (Lagerloef et al., 
2010). Another source of discrepancy can be related to strong vertical gradients of 
salinity in the near-surface layer, such that salinity at 5 m depth, sampled by a typical 
Argo buoy, differs significantly from the surface salinity, sampled by Aquarius. Vertical 
salinity differences larger than 0.1 psu (sometimes as large as 1.0 psu) are often observed 
in the tropical belt between the equator and 15oN, which coincides with the average 
position of ITCZ (Henocq et al., 2010). It follows that the observed relatively large 
discrepancies between the Aquarius and buoy data in the tropics are not necessarily errors 
in Aquarius measurements or errors in the mapping procedure, but may rather reflect the 
disparity between time and space scales captured by two different observational 
platforms. 

 
6. Summary and discussion 

 
A method has been presented for mapping SSS fields from Aquarius Level 2 data. The 
method is based on optimal interpolation (OI) and estimates SSS at a grid point as a 
weighted sum of nearby satellite observations with the weights optimized to minimize the 
estimation error variance. The key element of the proposed OI algorithm is that it takes 
into account statistics of correlated errors in the satellite retrievals, referred to here as 
inter-beam biases that appear to correlate over long distances along the satellite tracks. 
The inclusion of this type of error information into the OI algorithm has been shown to 
result in more accurate SSS maps, free from spurious structures.  
 
Examples have been presented that suggest that the OI technique can be an effective tool 
for mapping Aquarius SSS while correcting for various errors in the data. The quality of 
the OI analysis has been demonstrated by considering the agreement between synoptic 
features in the SSS fields and those observed in independent in-situ data, particularly 
high-resolution TSG data. The OI analysis has been shown to resolve SSS features at 
scales of ~150 km and larger, consistent with the limited resolution of the input data, and 
to observe North Atlantic SSS with space and time resolution not available from the 
present global Argo array.  
 
A trial OI SSS analysis is produced in the North Atlantic (0-400N) on a uniform grid with 
0.25o grid resolution and with a temporal resolution of one week. Statistical comparison 
of the OI analysis with respect to the Argo buoy data demonstrates its superior 
performance as compared to the standard Level 3 product currently produced by the 
NASA Goddard Space Flight Center’s Aquarius Data Processing System (ADPS). In 
particular, the average root-mean-square error of the OI analysis is ~40% smaller than 
that of the standard Level 3 product.     
 
It is worth emphasizing that the analysis presented in this paper is to a large extent 
experimental, focusing on a limited area in the North Atlantic. The results can be 
considered only ‘sub-optimal’ in the sense that the signal and error statistics, required by 
the OI analysis, are determined approximately. Many assumptions have been made, some 
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of which are not fully justified. In particular, the analysis scheme described here assumes 
both homogeneity and stationarity of the signal and error statistics, which is certainly one 
of the weakest aspects of the analysis. This is particularly relevant to the error correlation 
matrix. The results indicate that incorporating error information into the mapping 
procedure has dramatic effect on the quality of resulting SSS maps. Seasonal and 
geographical variations in the variance and/or length scales of the correlated errors in 
Aquarius SSS retrievals are likely very important factors to consider, but these are 
beyond the scope of the present paper and will be evaluated in future studies.  
 
Users of Aquarius SSS data should be aware that there are large-scale, space-time 
varying satellite biases relative to the in-situ data in the present global products 
[Lagerloef et al., 2013]. This problem seems to be not severe for the North Atlantic 
between 0-40oN (Figure 12a), but must be addressed in future global and regional 
analyses. Although the quality of Aquarius L2 data will surely improve in future data 
versions as processing algorithms improve, the methodology presented in this paper 
should continue to provide value-added SSS products for regional, high-resolution 
studies. 
 
Digital data of the weekly OI SSS analysis in the North Atlantic are currently available at 
http://iprc.soest.hawaii.edu/users/oleg/oisss/atl/ (weekly SSS beginning from September 
2011). 
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Appendix A. Impact of using simplified correlation model in OI SSS analysis. 

 
To examine the effect of using the simplified correlation model for the OI SSS analysis, 
we computed correlations of SSS anomalies using the data of weekly OI SSS maps. To 
do this in a straightforward manner, the maps were interpolated into locations of actual 
observations along the satellite tracks. The SSS correlations were then computed in 
exactly the same way as using the original L2 data (Section 3.2.3). 
 
Figure A1 illustrates the ensemble-mean autocorrelations of OI SSS for the repeat track 
shown by the heavy lines in Figure 2. For comparison, autocorrelations computed from 
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the Aquarius L2 data (Figure 6) are shown by the dashed lines. The figure indicates that 
the shapes of the space-lagged correlation functions computed from the Aquarius along-
track data agree well with those computed from the OI output. This includes not only 
positive values prior to the first zero-crossings (which are approximated by the Gaussian 
model) but also the negative lobes at larger lags. The mesoscale SSS variance, however, 
is much reduced in the OI SSS fields as compared to the along-track data, consistent with 
the filtering properties of both the signal and error correlation models used in the 
analysis. The degree of reduction is about 1.5 times in the tropics and up to 3 times at 
higher latitudes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. The variance and correlation length scales (the lag of the first zero crossing of the spatial 
correlation function) of mesoscale SSS variability as seen by Aquarius in 10-degree latitude bins 
in the North Atlantic. 
 

Latitude band Variance, psu2 Length scale, km 

0o-10oN 0.249 150 

10o-20oN 0.046 160 

20o-30oN 0.023 135 

30o-40oN 0.079 140 

 

Figure A1. Solid lines show the ensemble-mean autocorrelations of OI SSS for the ascending 
portion of the Aquarius repeat swath that passes through the SPURS domain (see Figure 2 for 
location).  Different colors correspond to different latitude bands. To compute these 
autocorrelations, weekly OI SSS maps were interpolated into locations of actual satellite 
observations along the satellite track. For comparison, autocorrelations computed from the 
Aquarius L2 data (Section 3.2.3; Figure 6) are reproduced here by the dashed lines. The green 
curve is the Gaussian function used in the OI analysis. 
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Table 2. Biases and RMSD statistics between weekly satellite SSS analyses and buoy SSS in the 
North Atlantic for the period from September 2011 to August 2013.   
 

Analysis Mean bias, psu STD of the weekly 

biases, psu 

Mean RMSD, psu 

Level 3 0.028 0.065 0.282 

COI 0.026 0.06 0.27 

AOI 0.009 0.03 0.198 
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