Abstract:

Using Late Pleistocene sea surface temperature reconstructions to constrain future greenhouse warming

Future greenhouse warming projections conducted with coupled climate models still exhibit a substantial spread in response to a given anthropogenic greenhouse gas concentration scenario. In order to constrain this spread and to provide robust warming projections, our understanding of Earth's global-mean surface temperature response to radiative forcing (referred to as climate sensitivity) needs to be further refined. Here we estimate an averaged glacial/interglacial climate sensitivity using 25 transient Earth system model simulations of the Last Glacial Cycle and a global-mean sea surface temperature (SST) reconstruction derived from 64 globally-distributed paleo-proxies of SST. Our results document that Earth's averaged Late Pleistocene equilibrium climate sensitivity is in the order of ~4.2 K per CO₂ doubling. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, this value translates into a global-mean surface warming of ~5.0 K by the year 2100 relative to pre-industrial levels. This estimate is in excellent agreement with the ensemble-mean projection of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our uncertainty analysis reveals further that the lack of robust reconstructions of glacial aerosol forcing is a key contributor to the overall uncertainty of paleo-based estimates of climate sensitivity.

link to full paper